
Minimizing Network and Storage Costs for Consensus with
Flexible Erasure Coding

Mi Zhang

zhangmi@ict.ac.cn

State Key Lab of Processors,

Research Center for Advanced

Computer Systems,

ICT, CAS

Qihan Kang

kangqihan17@mails.ucas.ac.cn

State Key Lab of Processors,

Research Center for Advanced

Computer Systems,

ICT, CAS, UCAS

Patrick P. C. Lee

pclee@cse.cuhk.edu.hk

The Chinese University of Hong Kong

ABSTRACT
Consensus protocols like Paxos and Raft provide data consistency

and fault tolerance for upper-layer distributed services. Log replica-

tion in these protocols can be supported by erasure coding, which

incurs a lower redundancy ratio than full-copy replication and

hence significantly saves network and storage costs for overall per-

formance improvements. However, existing consensus protocols

with erasure coding cannot achieve the minimum network and

storage costs during log replication. Our observation is that the

optimal coding scheme varies with the number of healthy servers in

a group, such that the coding scheme with the lowest redundancy

ratio in normal cases incurs more network traffic and storage over-

head for log replication in the presence of server failures. To this

end, we propose FlexRaft, which dynamically adjusts the coding

scheme used in Raft based on the server status to always achieve

the theoretically minimum redundancy ratio, while maintaining

the same liveness as in the original Raft. To address the issue of an

inconsistent coding scheme between the leader and its followers,

we specify the prerequisite of overwriting a log entry, and also al-

low the leader and its followers to exactly track the coding scheme

used. We further consider how to handle server failures and prove

the safety of FlexRaft. We implement a prototype of FlexRaft, atop

which we build a distributed key-value store to show its efficacy.

Experiments on Alibaba Cloud show that FlexRaft achieves the

theoretically minimum network and storage costs in practice, and

reduces the commit latency by 44.51% and 19.37% compared with

state-of-the-art CRaft and HRaft, respectively.

CCS CONCEPTS
• Computer systems organization → Redundancy; • Informa-
tion systems→ Distributed storage.

KEYWORDS
Raft, Erasure coding, Key-value store

ACM Reference Format:
Mi Zhang, Qihan Kang, and Patrick P. C. Lee. 2023. Minimizing Network

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0843-5/23/08. . . $15.00

https://doi.org/10.1145/3605573.3605619

and Storage Costs for Consensus with Flexible Erasure Coding. In 52nd
International Conference on Parallel Processing (ICPP 2023), August 07–10,
2023, Salt Lake City, UT, USA. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3605573.3605619

1 INTRODUCTION
Consensus protocols coordinate multiple servers to provide reliable

distributed services [16, 17, 21]. As failures are commonplace in

distributed environments (e.g., server crashes, network partition-

ing, and message loss), consensus protocols act as a foundation for

building distributed systems with high availability and strong con-

sistency. To protect distributed services against failures, consensus

protocols typically replicate commands across multiple servers, so

that distributed systems can operate correctly when a minority of

servers fail. Paxos [16, 17] and Raft [21] are two widely-adopted

consensus protocols in practical distributed systems [6, 9, 23, 25].

To guarantee strong consistency, consensus protocols record

data operations as log entries and replicate them to all servers in

a group. Each server maintains a log consisting of a sequence of

commands in the same order, such that the state machines running

in different servers can execute the same commands and output

the same results. To tolerate 𝐹 server failures, consensus protocols

need to replicate log entries in 𝑁 = (2𝐹 + 1) servers. This incurs
2𝐹 times the network traffic from the leader to its followers and 𝑁

times the storage cost as each server stores a full copy of the log

entries. The redundancy ratio (i.e., the actual data size divided by

the original data size) of full-copy replication is 𝑁 times. Thus, the

high redundancy ratio hinders the distributed systems to achieve

low latency and high throughput.

Erasure coding is a well-known low-redundancy approach to

achieving fault tolerance in storage systems. Reed-Solomon (RS)

codes [22] are the most popular erasure codes deployed in prac-

tice. An RS(𝑘,𝑚) code divides a data object into 𝑘 fixed-size data
chunks, and performs encoding to generate𝑚 parity chunks; note
that RS(𝑘,𝑚) is equivalent to full-copy replication when 𝑘 = 1. The

𝑘 +𝑚 coded chunks (i.e., data and parity chunks) are stored in 𝑘 +𝑚
servers. When a server failure occurs, any 𝑘 out of the 𝑘 +𝑚 coded

chunks suffice to reconstruct the original content. The redundancy

ratio of RS(𝑘,𝑚) is (𝑘 +𝑚)/𝑘 , which is only 1/𝑘 times compared

to full-copy replication. Thus, erasure coding significantly reduces

the network traffic and storage overhead.

Recent studies apply erasure coding into consensus protocols to

save network and storage costs for high performance [14, 20, 27]. RS-

Paxos [20] is the first work that adopts erasure coding to replicate

the log entries in Paxos. To maintain safety (i.e., never return an

https://doi.org/10.1145/3605573.3605619
https://doi.org/10.1145/3605573.3605619
https://doi.org/10.1145/3605573.3605619

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Mi Zhang, Qihan Kang, and Patrick P. C. Lee

incorrect result), RS-Paxos stores the chunks of a log entry in at least

𝐹 + 𝑘 servers, such that the original data can be recovered from the

remaining servers under 𝐹 server failures. RS-Paxos trades liveness
level (i.e., the number of tolerable failures) for better performance.

To maintain liveness level 𝐹 as in the original Raft, CRaft [27]

converts to full-copy replication when there are fewer than (𝐹 + 𝑘)
healthy servers. HRaft [14] optimizes CRaft by replenishing some

coded chunks in several healthy servers instead of switching to

full-copy replication directly.

However, existing erasure-coded consensus protocols do not

specify the optimal coding scheme (i.e., the choices of 𝑘 and𝑚) to

minimize both network and storage costs during log replication,

thereby failing to achieve the lowest redundancy ratio. The redun-

dancy ratio (𝑘 +𝑚)/𝑘 depends on the value of 𝑘 , as the value of

𝑘 +𝑚 is equal to the number of servers in a group (i.e., 𝑁) where

each server stores a coded chunk of a log entry. When all servers

in a group function correctly, we can choose the largest available

value of 𝑘 for log replication to minimize the network and stor-

age costs. However, a larger 𝑘 also implies that more servers (i.e.,

𝐹 + 𝑘) are required to store coded chunks for entry commitment.

If we use the coding scheme with the largest 𝑘 for log replication

at the beginning, the network and storage costs cannot stay at the

minimum when server failures occur. In the presence of server fail-

ures, neither CRaft nor HRaft achieves the minimum redundancy

ratio, as CRaft degrades to full-copy replication while HRaft needs

to store additional coded chunks in the remaining servers. Thus,

existing erasure-coded consensus protocols cannot maintain the

lowest redundancy ratio for entry commitment all the time.

Our insight is that the optimal coding scheme for entry commit-

ment in consensus protocols has a different value of 𝑘 depending

on the number of healthy servers in a group. For example, as shown

in Table 1 in §2.3, the optimal coding scheme (marked with a⋆)

for a Raft group of five servers is RS(3,2) and RS(2,3) when there is

zero and one server failure, respectively. We argue that the coding

scheme should be dynamically adjusted based on the latest server

status (which can be estimated by heartbeat messages between the

leader and the followers in Raft [21]). In contrast, both CRaft and

HRaft employ a fixed coding scheme regardless of the server status.

In this paper, we propose a flexible erasure coding approach

for Raft called FlexRaft, which provably minimizes both network

and storage costs to commit log entries. FlexRaft varies the coding

scheme and maintains the lowest redundancy ratio in the presence

of server failures. It sets 𝑘 as large as possible based on the number

of healthy servers in a group. However, the varied coding scheme

requires overwriting the coded chunks of a log entry with the new

ones, thereby raising new consistency issues between the leader

and its followers: 1) for the same log entry, the chunk stored in a

follower can be mistakenly overwritten by an old coded chunk, and

2) some followersmay not successfully update the old chunks before

the log entry is committed. Thus, FlexRaft specifies the prerequisite

of overwriting a log entry, and modifies the AppendEntries RPCs
(i.e., the commands initiated by the leader to replicate log entries

(with arguments) or provide heartbeats (without arguments)) to

ensure that the chunks stored in the followers are encoded with

the same coding scheme as the leader. We consider how to recover

a failed server when adopting a varied coding scheme and prove

the safety of FlexRaft. We summarize our contributions as follows.

• We analyze the optimal coding scheme for consensus protocols

under a different number of server failures. We show that given

𝑁 ′
healthy servers in a Raft group (𝑁 ′ ≤ 𝑁), the coding scheme

with 𝑘 = 𝑁 ′ − 𝐹 achieves the lowest redundancy ratio while

keeping the liveness level 𝐹 .

• We propose FlexRaft to dynamically vary the coding scheme

used for log replication in the Raft protocol based on the server

status. To guarantee that the leader and its followers use the same

coding scheme for a log entry, FlexRaft adds a restriction rule to

avoid mistakenly updating a coded chunk in a follower, and also

updates the AppendEntries RPCs so that the leader can exactly

track the coding scheme of the stored chunks.

• We handle server failure recovery when using a varied coding

scheme, and prove that FlexRaft guarantees Raft safety while

maintaining the liveness level 𝐹 .

• We implement FlexRaft in C++ and build a distributed key-value

store using RocksDB [10] atop FlexRaft. Experiments on Alibaba

Cloud [2] show that FlexRaft reduces the commit latency by

44.51% and 19.37%, respectively, compared with CRaft and HRaft

under two server failures for a group of seven servers.

The source code of our FlexRaft prototype is now available at:

https://github.com/ACS-Storage-Group/FlexRaft-Code.

2 BACKGROUND AND MOTIVATION
2.1 Basics of Raft Consensus
We first provide the background details of Raft [21]. We consider a

Raft group of 𝑁 = (2𝐹 + 1) servers that can tolerate any 𝐹 server

failures (𝐹 ≥ 1). Each server is in one of the following three states:

leader, follower, and candidate. In a normal situation, there is one

leader in a Raft group and the remaining servers are followers. The

leader handles all client requests and replicates log entries (i.e., the
operations being executed); the followers respond to the requests

from the leader and candidates, and redirect the client requests to

the leader; the candidate state is used to elect a new leader. Raft

divides time into terms, numbered with consecutive integers, and

each term starts with a leader election.
Raft adopts a strong form of leadership to simplify the manage-

ment of log replication. The leader accepts log entries from clients

and replicates them to other servers in the same Raft group by

sending AppendEntries RPCs. Each log entry tracked by an index
(a monotonically increasing number) stores an update to the state

machine along with the term number when the leader receives the

update. When a log entry is replicated to a majority of servers, the

leader commits and applies the log entry and its previous log entries,

and informs the followers to apply the log entries. Raft guarantees

the leader completeness property, meaning that the leader at any

term has all committed entries in the previous terms.

2.2 Erasure-Coded Consensus Protocols
RS-Paxos [20] is the first protocol to combine erasure coding and

consensus to reduce both network and storage costs. It divides

the original data of a log entry into 𝑘 chunks with equal sizes

and encodes the 𝑘 chunks into 𝑚 parity chunks (𝑘 > 1,𝑚 ≥ 1)

using RS(𝑘,𝑚). It then sends one chunk to each acceptor for log

replication. Any 𝑘 chunks of data and parity chunks can reconstruct

the original log entry. As the chunk size is a fraction (i.e., 1/𝑘 < 1)

https://github.com/ACS-Storage-Group/FlexRaft-Code

Minimizing Network and Storage Costs for Consensus with Flexible Erasure Coding ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

of the total data size, RS-Paxos saves network bandwidth cost and

disk IOs. RS-Paxos is actually a superset of the vanilla Paxos [16, 17].

It requires that the intersection between the write quorum 𝑄𝑤 and

read quorum 𝑄𝑟 should be not less than 𝑘 to guarantee safety; that

is, RS-Paxos should satisfy 𝑄𝑟 +𝑄𝑤 − 𝑁 ≥ 𝑘 when using RS(𝑘,𝑚)
for storing log entries, such that at least 𝑘 chunks can be read from

𝑄𝑟 servers to recover the original data. With a larger 𝑘 , it achieves

more network and storage savings, but puts a higher requirement

on the write and read quorum. Thus, compared to the vanilla Paxos

using full-copy replication, RS-Paxos tolerates fewer failed servers

(< 𝐹) in a group of 𝑁 = (2𝐹 + 1) servers.
CRaft [27] extends Raft with erasure coding like RS-Paxos, while

maintaining the same liveness level (i.e., the number of failed servers

tolerable by a protocol) as Raft. To address the liveness problem

of RS-Paxos (i.e., tolerating fewer than 𝐹 failures), CRaft uses era-

sure coding and full-copy replication jointly. When at least 𝐹 + 𝑘
servers are running normally in a Raft group, CRaft uses RS(𝑘,𝑚)
for log replication to reduce network and storage costs; otherwise, it

switches to full-copy replication and keeps the liveness level 𝐹 (i.e.,

CRaft switches to full-copy replication when the number of failed

servers is larger than 𝑁 − 𝐹 − 𝑘). Although CRaft maintains the

same liveness as the original Raft, switching to full-copy replication

for log replication causes sharp performance degradation when

the number of healthy servers reduces to less than 𝐹 + 𝑘 . When a

leader is newly elected in CRaft, the new leader performs a Lead-
erPre operation to deal with any unapplied coded chunk (i.e., not

yet applied to the state machine) before the leader fully functions.

During the LeaderPre operation, the leader attempts to recover any

unapplied entries in sequence by collecting other coded chunks

from its followers, and deletes the entries that cannot be recovered.

HRaft [14] mitigates the sharp performance degradation in CRaft

by replenishing some coded chunks in several healthy servers when

failures occur. It adjusts the placement of the coded chunks and

replicates some coded chunks to healthy servers instead of switch-

ing to full-copy replication if the number of failed servers is greater

than 𝑁 − 𝐹 − 𝑘 . When the leader receives 𝑝 (𝐹 ≤ 𝑝 ≤ 𝐹 + 𝑘 − 1)

acknowledgments during log replication (i.e., there are (𝑁 − 1 − 𝑝)

failed servers), it chooses (𝐹 +𝑘−1−𝑝) coded chunks and replicates
them to 𝐹 healthy servers before committing a log entry. In other

words, some servers store multiple coded chunks of a log entry to

guarantee safety (i.e., retrieving enough chunks for data reconstruc-

tion). Although HRaft avoids switching to full-copy replication, it

cannot always maintain the minimum storage and network costs

during log replication.

2.3 Motivating Example
We compare the network and storage costs of CRaft and HRaft

with different erasure coding schemes under a different number of

server failures. We use a group consisting of five servers (𝑁 = 5),

which can tolerate at most two server failures (𝐹 = 2). The network
cost is the bandwidth usage from the leader to its followers for a

log entry to be committed. As the leader stores a full copy of the

log, the storage cost is equal to the network cost plus one [27].

Table 1 shows the network and storage costs of CRaft and HRaft

with different coding schemes where 𝑘 ranges from 1 to 3. Here, we

denote full-copy replication by 𝑘 = 1. In the normal case that no

server fails (i.e., 𝑓 = 0), CRaft andHRaft introduce the same network

Table 1: Performance of CRaft and HRaft using different
erasure coding schemes for a group of five servers (𝑁 = 5).

(a) No server failure (𝑓 = 0)

k Log Replication Network Cost Storage Cost
CRaft HRaft CRaft HRaft CRaft HRaft

1 full-copy full-copy 4 4 5 5

2 RS(2,3) RS(2,3) 2 2 3 3

⋆ 3 RS(3,2) RS(3,2) 4/3 4/3 7/3 7/3

(b) One server failure (𝑓 = 1)

k Log Replication Network Cost Storage Cost
CRaft HRaft CRaft HRaft CRaft HRaft

1 full-copy full-copy 3 3 4 4

⋆ 2 RS(2,3) RS(2,3) 3/2 3/2 5/2 5/2

3 full-copy RS(3,2)+ 3 5/3 4 8/3

(c) Two server failures (𝑓 = 2)

k Log Replication Network Cost Storage Cost
CRaft HRaft CRaft HRaft CRaft HRaft

⋆ 1 full-copy full-copy 2 2 3 3

2 full-copy RS(2,3)+ 2 2 3 3

3 full-copy RS(3,2)+ 2 2 3 3

We label the optimal coding scheme (used by FlexRaft) under a different

number of server failures with a⋆. RS(𝑘,𝑚)+ in HRaft means that it

replenishes some coded chunks when using RS(𝑘,𝑚) .

and storage costs when using the same coding scheme. Both CRaft

and HRaft achieve the minimum network and storage costs with

the largest 𝑘 (i.e., 𝑘 = 3) among all three coding settings. When

using RS(3,2) for log replication, the network and storage costs are

4/3 and 7/3, respectively. If one server fails (i.e., 𝑓 = 1), CRaft with

𝑘 = 3 switches to full-copy replication as the number of healthy

servers in the group is less than (𝐹 + 𝑘) (i.e., 5). The network and

storage costs of CRaft sharply increase to 3 and 4, respectively, the

same as the original Raft. Under one server failure, HRaft with 𝑘 = 3

still uses RS(3,2) coding scheme while storing two coded chunks in

two servers (denoted by RS(3,2)+). The network and storage costs

of HRaft gradually increase to 5/3 and 8/3, respectively, lower than

those of CRaft with 𝑘 = 3 but higher than CRaft/HRaft with 𝑘 = 2.

For 𝑘 = 2, both CRaft and HRaft can use RS(2,3) for log replication,

which incurs the minimum network and storage costs (i.e., 3/2 and

5/2, respectively). When two servers fail (i.e., 𝑓 = 2), CRaft with

𝑘 = 2 and 𝑘 = 3 switches to full-copy replication, while HRaft

needs to store more coded chunks to keep the liveness level 𝐹 . For

CRaft and HRaft under two server failures, the network and storage

costs are 2 and 3, respectively, equal to that of the original Raft.

Thus, the largest 𝑘 does not guarantee the minimum network and

storage costs in all cases; for example, RS(2,3), rather than RS(3,2),

incurs the lowest network and storage costs when one server fails.

Although HRaft avoids switching to full-copy replication in the

presence of server failures, it fails to achieve the minimum network

and storage costs using a coding scheme with a fixed 𝑘 .

3 DESIGN OF FLEXRAFT
FlexRaft dynamically adjusts the coding scheme for log replication

according to the cluster status, so as to minimize both the network

and storage costs while maintaining the liveness level 𝐹 . We first

describe the choice of coding schemes in FlexRaft (§3.1). We then ex-

plain the issues raised by varying coding schemes and how FlexRaft

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Mi Zhang, Qihan Kang, and Patrick P. C. Lee

addresses them (§3.2). Finally, we introduce how FlexRaft deals with

server recovery (§3.3) and provides the safety guarantee (§3.4).

3.1 Choice of Coding Schemes
We first define the terminologies and notations. We consider a Raft

group of 𝑁 servers, where 𝑁 = 2𝐹 + 1, so as to tolerate up to 𝐹

failures. Let 𝑁 ′
be the total number of healthy servers in the group

(i.e., the servers are alive and can communicate with each other

and the clients [27]), and 𝑓 be the number of server failures (i.e.,

𝑁 ′ = 𝑁 − 𝑓). When a Raft group starts, all servers are healthy

and the number of healthy servers is equal to the total number

of servers in the group (i.e., 𝑁 ′ = 𝑁 and 𝑓 = 0). The number of

healthy servers decreases when some servers crash or lose network

connection, or increases when the failed servers rejoin the group

or some new servers are added to replace the failed servers. Cur-

rently, we consider a Raft group of a fixed size where 𝑁 does not

change. The Raft leader can estimate the number of healthy servers

and update the value of 𝑁 ′
based on the exchanges of the latest

heartbeat messages with its followers.

Coding scheme chosen by FlexRaft. To minimize both the net-

work and storage costs, FlexRaft dynamically chooses the coding

scheme based on the number of healthy servers remaining in a

group. Given𝑁 ′
healthy servers, FlexRaft uses RS(𝑘,𝑚) code where

𝑘 = 𝑁 ′ − 𝐹 (i.e., 𝑁 − 𝑓 − 𝐹) and𝑚 = 𝑁 −𝑘 for log replication. Here,

we make 𝑘 +𝑚 = 𝑁 , so that each server in the group can store a

coded chunk (either original data chunk or parity chunk) of a log

entry. Note that 𝑘 = 1 means that FlexRaft uses full-copy replication.

FlexRaft chooses the available largest value of 𝑘 (i.e., 𝑁 ′ − 𝐹) given

the number of healthy servers 𝑁 ′
, so as to replicate a log entry

with the lowest redundancy ratio. We prove that FlexRaft always

minimizes the network and storage costs for log replication below.

Theorem 1. When there are 𝑁 ′ (𝐹 + 1 ≤ 𝑁 ′ ≤ 𝑁) healthy servers
in a Raft group, FlexRaft always minimizes the network and storage
costs for log replication.

Proof. To maintain safety, at least 𝐹 +𝑘 servers should store the

chunks of a log entry before it can be committed, such that there

are at least 𝑘 chunks in any 𝐹 + 1 servers [20, 27]. When 𝑁 ′
healthy

servers exist in a Raft group, at most 𝑁 ′
servers store the chunks of

a log entry to commit (i.e., 𝐹 +𝑘 ≤ 𝑁 ′
). Thus, Raft can use RS(𝑘,𝑚),

where 𝑘 ≤ 𝑁 ′ − 𝐹 , for log replication. The redundancy ratio of

RS(𝑘,𝑚) is 𝑁 ′/𝑘 . As the network and storage costs decrease with

the reduction of redundancy ratio, a larger value of 𝑘 incurs lower

storage and network overhead given a fixed 𝑁 ′
. Thus, FlexRaft

always minimizes the network and storage costs for log replication

by using the largest available 𝑘 (i.e., 𝑁 ′ − 𝐹). □
Table 2 shows the coding schemes, log replication methods, net-

work cost, and storage cost of FlexRaft under a different number

of server failures where 𝑓 increases from 0 to 𝐹 . Under 𝑓 server

failures, FlexRaft uses a coding scheme with 𝑘 = 𝑁 − 𝑓 − 𝐹 for log

replication where the network cost is (𝑁 − 𝑓 − 1)/𝑘 and the storage

cost is (𝑁 − 𝑓 − 1)/𝑘 + 1. Note that the network and storage costs

increase with the number of server failures. When 𝐹 servers fail,

the only method for log replication is full-copy replication.

Comparison to CRaft and HRaft. FlexRaft always achieves the
minimum redundancy ratio, introducing lower network and storage

costs than CRaft and HRaft. When the number of healthy servers𝑁 ′

Table 2: Coding scheme used in FlexRaft to minimize net-
work and storage costs under a different number of server
failures.

𝑓 𝑘 Log Replication Network Cost Storage Cost
0 𝑁 − 𝐹 RS(𝑁 − 𝐹, 𝐹) 𝑁 −1

𝑁 −𝐹
𝑁 −1
𝑁 −𝐹 + 1

1 𝑁 − 𝐹 − 1 RS(𝑁 − 𝐹 − 1, 𝐹 + 1) 𝑁 −2
𝑁 −𝐹−1

𝑁 −2
𝑁 −𝐹−1 + 1

2 𝑁 − 𝐹 − 2 RS(𝑁 − 𝐹 − 2, 𝐹 + 2) 𝑁 −3
𝑁 −𝐹−2

𝑁 −3
𝑁 −𝐹−2 + 1

...

𝐹 1 full-copy 𝑁 − 𝐹 − 1 𝑁 − 𝐹

is equal to or greater than 𝐹 + 𝑘 , all protocols can employ RS(𝑘,𝑚)
for log replication, where the network cost is (𝑁 ′ − 1)/𝑘 . Suppose
that we have Δ𝑓 additional failed servers, such that the number of

healthy servers 𝑁 ′
now less than 𝐹 + 𝑘 (i.e., 𝑁 ′ = 𝐹 + 𝑘 − Δ𝑓). The

three protocols take different approaches to maintain the liveness

level 𝐹 : i) CRaft converts to full-copy replication, where the network

cost increases to 2𝐹 − 𝑓 [27]; ii) HRaft keeps using RS(𝑘,𝑚) and
stores additional copies of some coded chunks, where the network

cost is (2𝐹 − 𝑓 + 𝐹 (𝑓 − 𝑁 + 𝐹 + 𝑘))/𝑘 [14]; iii) FlexRaft reduces the

value of 𝑘 based on the failure status and uses RS(𝑘 − Δ𝑓 ,𝑚) (for
𝑘 − Δ𝑓 ≥ 1), where the network cost is (𝐹 + 𝑘 − Δ𝑓 − 1)/(𝑘 − Δ𝑓).
Compared to the network cost when there are (𝐹+𝑘) healthy servers
(i.e., (𝐹 +𝑘−1)/𝑘), the increased cost of HRaft is Δ𝑓 (𝐹 −1)/𝑘 , while
that of FlexRaft is Δ𝑓 (𝐹 −1)/(𝑘 (𝑘−Δ𝑓)). Since we have 𝑘−Δ𝑓 ≥ 1,

the increment of FlexRaft is less than that of HRaft. Also, as HRaft

incurs less network traffic than CRaft [14], the network cost of

FlexRaft is less than that of CRaft as well. Moreover, as the storage

cost equals the network cost (from the leader to its followers) plus

the storage cost of a full copy in the leader, the storage cost of

FlexRaft is also less than those of CRaft and HRaft.

3.2 Varied Coding Scheme
The main idea of FlexRaft is to choose the optimal coding scheme

for log replication based on the cluster status. When failures occur

during writes, FlexRaft adjusts the value of 𝑘 if there are not enough

servers storing the log entries.

Varying coding scheme during log replication. When FlexRaft

decides to vary the coding scheme for a log entry, the leader needs to

re-encode the entry with the new coding scheme and send the new

chunks to its followers. At the beginning of replicating a log entry,

FlexRaft first performs encoding on the data using an initial coding

scheme RS(𝑘,𝑚), where𝑘 is determined by the latest𝑁 ′
(§3.1). Then

the leader distributes the coded chunks to the followers and waits

for the responses from the followers. Here, we map the chunk ID to

the server ID consistently to determine which server should store

which chunk for a log entry. When a follower receives a chunk from

the leader, the follower appends the chunk to its log and returns a

successful response to the leader. The leader collects the responses

from the followers and decides how to perform log replication. If

the leader receives at least 𝐹 +𝑘−1 successful responses, it continues
to commit the log entry; otherwise, the leader varies the coding

scheme to maintain safety since there are fewer than 𝐹 + 𝑘 − 1

healthy followers for storing the log entry. FlexRaft then updates

𝑁 ′
based on the responses from the followers and switches from

the initial coding scheme to the new coding scheme RS(𝑘′,𝑚′)
where 𝑘′ = 𝑁 ′ − 𝐹 and𝑚′ = 𝑁 − 𝑘′. The leader re-encodes the log

Minimizing Network and Storage Costs for Consensus with Flexible Erasure Coding ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

S0
(Leader)

S3

S1

S4

S2

k=3, RS(3,2)

c1

c2

c1'

Re-encoding

c2'

Encoding

c3 is NOT
received c3' c3

k'=2, RS(2,3)

all chunks all chunks' all chunks'

c1'

c2'

(a) (b)c4

Figure 1: The coding scheme varies during log replication.

entry using the new coding scheme, and sends the new chunks to

its followers. Each follower overwrites the old chunks with the new

chunks. If the leader receives at least 𝐹 +𝑘′−1 successful responses,

it can commit the log entry; otherwise, the leader continues to

adjust the coding scheme by decreasing the value of 𝑘 and performs

the above process until it successfully replicates the log entry. The

smallest value of 𝑘 is one (i.e., full-copy replication).

Figure 1(a) shows how the coding scheme varies during log

replication in a Raft group of five servers. At the beginning, the

leader 𝑆0 encodes the log entry using RS(3,2) and sends four chunks

to its followers. However, the leader only receives three responses

from servers 𝑆1, 𝑆2, and 𝑆4, since 𝑆3 does not receive any chunk

(e.g., due to network failures). The leader 𝑆0 then varies the coding

scheme to RS(2,3), re-encodes the log entry, and sends the new

chunks to its followers. The followers 𝑆1 and 𝑆2 overwrite the old

chunk with the new chunk, 𝑆3 stores the new chunk directly, and

𝑆4 does not store the new chunk as it now crashes. After receiving

successful responses from servers 𝑆1, 𝑆2, and 𝑆3, the leader 𝑆0 can

commit this log entry safely. However, varying the coding scheme

raises new challenges to the correctness of log replication.

Challenge 1: the chunk in a follower can be mistakenly over-
written by an old chunk of the same log entry. As the coding
scheme varies during log replication in FlexRaft, the servers in a

group may store the chunks encoded with different coding schemes

for a log entry. Thus, the chunk stored in a follower may be an old

one due to chunk overwrites. For example, as shown in Figure 1(b),

the followers 𝑆1, 𝑆2, and 𝑆3 are expected to store the new chunks

𝑐′
1
, 𝑐′

2
, and 𝑐′

3
, respectively, after the re-encoding with RS(2,3). How-

ever, due to network delays, the request containing the old chunk

𝑐3 reaches the follower 𝑆3 after 𝑆3 stores the new chunk 𝑐′
3
. 𝑆3 then

overwrites 𝑐′
3
with 𝑐3, but the leader has received a successful re-

sponse from 𝑆3 that it stores 𝑐
′
3
. In this case, the chunk stored in

a follower is inconsistent with that stored in the leader; in other

words, a log entry is now encoded by different coding schemes.

Thus, FlexRaft should guarantee that the chunks of a log entry

stored in the followers are encoded with the same coding scheme

as specified by the leader.

Prerequisite of overwriting a log entry. To avoid mistakenly

overwriting a chunk in a follower, FlexRaft requires the follower

to check the value of 𝑘 with the chunk before overwriting a log

entry: if the value of 𝑘 with the new chunk is less than the current

value of 𝑘 , the follower overwrites the current chunk with the new

one and responds to the leader; otherwise, the follower can ignore

S0
(Leader)

S3

S1

S4

S2

k=3, RS(3,2)

c1

c2

c1'

Re-encodingEncoding

c3

k'=2, RS(2,3)

all chunks all chunks'

c1'c1

c2 c2'

c3

Response Response

c3 c3

c4 c4

c2'

Figure 2:Responses of varied coding schemes during log replication.

this message containing the new chunk. The reason is that the

value of 𝑘 always decreases when the coding scheme varies during

log replication, and the new chunk to overwrite is encoded from a

coding scheme with a smaller 𝑘 . Thus, in Figure 1, if the follower

𝑆3 compares the value of 𝑘 with the chunk 𝑐3 (i.e., 𝑘 = 3) to the one

with the chunk 𝑐′
3
(i.e., 𝑘 = 2), it will refuse to update the current

chunk and the above inconsistent case will not occur.

Challenge 2: some followers may not overwrite the old
chunks successfully before the leader commits the log entry.
Although each follower checks the value of 𝑘 before overwriting its

chunks, the chunks stored in the follower may still use a different

coding scheme from the leader’s. One possible case is that the leader

requires the followers to overwrite their existing old chunks, yet

some followers fail to replace the old chunks with the new chunks.

Figure 2 depicts such an example in a group of five servers (𝑁 = 5).

The leader 𝑆0 encodes a log entry with RS(3,2) and sends the coded

chunks to its followers. All followers store the chunks successfully

and return successful responses to the leader. However, the follower

𝑆3’s response does not reach the leader in time (e.g., due to network

failures). The leader 𝑆0 only receives three successful responses

from 𝑆1, 𝑆2, and 𝑆4 before it decides to vary the coding scheme.

Thus, the leader 𝑆0 re-encodes the log entry with RS(2,3) and dis-

tributes the new chunks to the followers. As the AppendEntries

RPC from the leader to the follower 𝑆3 is lost and the follower 𝑆4
crashes this time, only the followers 𝑆1 and 𝑆2 overwrite the old

chunks with the new chunks and return successful responses to the

leader again. However, the leader 𝑆0 mistakenly thinks that three

followers have stored the new chunks and treats log replication as

successful, since it also receives the last successful response from

𝑆3. That is, the new chunks being re-encoded are stored in only

two followers, while 𝑆3 still stores the old chunk. The main rea-

son is that the successful response from a follower to the leader

in Raft, which consists of the currentTerm and a true flag if the

follower contains the entry matching the index of the previous log

entry (i.e., preLogIndex) and the term of prevLogIndex entry (i.e.,

prevLogTerm), fails to indicate which server stores which coded

chunk. Thus, the leader cannot distinguish the exact number of

stored chunks belonging to the same coding scheme for a log entry

from the responses of the followers.

Updating AppendEntries RPCs. To make a follower’s log stay

consistent with the leader’s, we add prevK (i.e., the value of 𝑘 of the

prevLogIndex entry) and ChunkInfo (i.e., a tuple of the log index and
the value of 𝑘) to the AppendEntries RPCs. We include prevK in the

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Mi Zhang, Qihan Kang, and Patrick P. C. Lee

request of the AppendEntries RPCs to allow a follower to detect the

chunks encoded with a different coding scheme. When receiving an

AppendEntries RPC request, the follower checks the value of prevK

after checking the term and prevLogTerm. If the follower finds

that the value of 𝑘 of the entry in prevLogIndex does not match

prevK (i.e., storing a chunk encoded with an old coding scheme),

the follower can return false; the leader then decrements nextIndex

and retries to send AppendEntries RPCs. For example, when 𝑆3
rejoins the group as a follower, it can compare prevK and find that

the old chunk 𝑐3 should be overwritten. Moreover, we include the

ChunkInfo of the log entries in the requests and responses of the

AppendEntries RPCs. Thus, the leader sends log entries containing

ChunkInfo (included in each log entry) to the followers and each

follower responds to the leader with the ChunkInfo of the chunks

stored, such that the leader can determine whether the chunks

encoded with the latest coding scheme have been stored in enough

followers. For example, by checking the ChunkInfo in the received

responses, the leader 𝑆0 in Figure 2 can find that one response

should not be accounted as a successful response to replicate the

new chunks, as the chunk 𝑐3 rather than the new chunk 𝑐′
3
is stored

in 𝑆3. Thus, the leader will decrease the value of 𝑘 (i.e., reducing to

full-copy replication) and retry to replicate the log entry. Thus, by

adding prevK and ChunkInfo to the AppendEntries RPCs, FlexRaft

guarantees that the chunks belonging to a committed log entry are

correctly stored in the followers using the same coding scheme.

3.3 Server Recovery
Handling leader failures. When the current leader fails, the pro-

cess of leader election starts and a new leader is elected. For the

committed log entries, the newly elected leader has at least one

chunk according to Raft election rules [21], and the leader can re-

cover the complete log entry by collecting other chunks from its

followers since we require that any 𝐹 +1 servers store 𝑘 chunks. For

the unapplied entries, the new leader should perform the LeaderPre

operation (§2.2) before it can become a fully-functioning leader

[27]. Note that the chunks stored in the new leader may not use

the same coding scheme when the log entries are committed, even

though the leader’s log is up-to-date. To deal with this issue, the

leader recovers the entries among (commitIndex, lastLogIndex], i.e.,

the entries between the highest index of log entry known to be com-

mitted and the index of the last log entry, and replaces the chunks

with the complete log entries during the LeaderPre operation. As

the leader stores the ChunkInfo for each log entry, the leader can

decide whether a log entry is recoverable based on the value of 𝑘 .

For those entries that cannot be recovered, the leader removes them

from the log. The leader can process the client requests normally

after the LeaderPre operation.

A newly elected leader may need to perform the decoding op-

eration when serving read requests to an object. If the leader only

has a coded chunk for a data object to be read, the leader needs

to retrieve other coded chunks to decode the original object. The

leader then stores a full copy of the recovered object for further

reads to avoid decoding every time. That is, the leader handles

multiple reads to an object with at most one decoding operation.

Note that CRaft and HRaft perform the same read procedure as

FlexRaft. These Raft protocols with erasure coding make a trade-off

between the network and storage costs during commitment and

the computation overhead during reads.

Recovering a failed follower. When a server resumes normally,

FlexRaft restores the committed log entries with the same coding

scheme (i.e., the same value of 𝑘). For a committed log entry, the

recovery cost of FlexRaft is 1/𝑘 of the original data size. FlexRaft

guarantees that the recovered server stores all previous log entries

before it is counted as a healthy server to function. After the recov-

ery completes, FlexRaft increases the number of healthy servers

(i.e., 𝑁 ′
) accordingly, and varies the coding scheme with 𝑘 = 𝑁 ′ −𝐹

to replicate log entries later.

Discussion. The minimum redundancy ratio is achieved with

RS(𝐹 + 1, 𝐹) code when all servers in the group are healthy. Al-

though FlexRaft minimizes the network and storage costs during

log replication, the log entries committed in the presence of failures

are encoded with a smaller 𝑘 than 𝐹 + 1. To further reduce the

storage cost, we can convert the log entries stored with a smaller 𝑘

to the RS(𝐹 + 1, 𝐹) code when all the servers are healthy (𝑁 ′ = 𝑁).

It needs to re-encode log entries and update the log entries in all

servers, which inevitably introduces a large amount of network

traffic. Such code conversion actually trades the network bandwidth

cost for storage savings. FlexRaft currently focuses on minimizing

the network and storage costs to reduce the commit latency. We

leave the code conversion as future work.

3.4 Safety Guarantee
We show that FlexRaft guarantees Raft safety by proving the Log

Matching Property and the Leader Completeness Property.

Theorem 2. Log Matching Property: if two logs contain an entry
with the same index and term, then the logs are identical (either a full
copy or a coded chunk of the original proposed data) in all entries up
through the given index.

Proof. The original Raft protocol maintains two properties to

constitute the Log Matching Property: 1) if two entries in different

logs have the same index and term, then they store the same com-

mand, and 2) if two entries in different logs have the same index and

term, then the logs are identical in all preceding entries. The first

property stands because a leader creates at most one entry with a

given log index in a given term, and log entries never change their

position in the log. FlexRaft works as in Raft, although it varies the

coding scheme when the server status changes. The coded chunk

stored with the same index and term may use an old coding scheme

(which will be updated during processing AppendEntries RPCs and

the LeaderPre phase), but stands for the same command. The sec-

ond property in Raft is guaranteed by a simple consistency check

performed by the AppendEntries RPCs. FlexRaft also follows the

AppendEntries RPC rules in the original Raft protocol. When the

coding scheme varies for the entry with the same index and term,

FlexRaft adds a restriction rule to avoid mistakenly overwriting a

log entry, and includes prevK and ChunkInfo in the AppendEntries

RPCs to make the followers use the same coding scheme as the

leader. Thus, the Log Matching Property still holds where the data

is a coded chunk when using erasure coding for the log entry. □

Theorem 3. Leader Completeness Property: if a log entry is com-
mitted in a given term, then that entry will be present in the logs of
the leaders for all higher-numbered terms.

Minimizing Network and Storage Costs for Consensus with Flexible Erasure Coding ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

Proof. As FlexRaft extends the LeaderPre operation in CRaft,

CRaft guarantees that if a log entry 𝑒 is committed in a given term,

then 𝑒 will be present in the logs of the leaders for all higher-

numbered terms, and 𝑒 will not be deleted in any higher-numbered

term’s LeaderPre [27]. We then prove that the committed data is

recoverable using the right coding scheme in FlexRaft. For each com-

mitted entry, FlexRaft guarantees that there are at least 𝐹 +𝑘 coded

chunks stored in the cluster. Thus, the leader can always recover a

committed entry by collecting 𝑘 chunks from other servers. There-

fore, the Leader Completeness Property stands in FlexRaft. □

4 IMPLEMENTATION
We implement a prototype of FlexRaft from scratch in C++. We

leverage the ISA-L library [13] for erasure coding operations and use

RCF 3.0 [8] for interprocess communication. To evaluate FlexRaft,

we also build a distributed key-value store based on RocksDB v7.3.1

[10]. Each server has a constantly running FlexRaft module, a

RocksDB engine as a state machine, and a background working

thread to apply committed entries to the state machine. The whole

system contains about 6K LoC.

Log entry. We modify the structure of the log entry by adding

an EntryType flag and the ChunkInfo, a tuple of (log index, 𝑘). The

EntryType flag in a log entry’s metadata indicates whether the

command in this entry is a complete copy or a coded chunk. If

this entry is encoded, the ChunkInfo identifies the coded chunk

uniquely, where 𝑘 is the encoding parameter used for this entry.

Log replication and commitment. The leader determines the cod-

ing scheme for log replication by counting the number of healthy

servers. The leader sends heartbeat messages (i.e., empty Appen-

dEntries RPCs) to its followers every 100ms. To track the server

status, the leader records the time point when it receives RPC mes-

sages (RPC requests and responses) from other servers. If the leader

detects that some servers have not sent any messages for some

time (e.g., 200ms), the leader considers these servers as unhealthy

and determines the encoding parameter by 𝑘 = 𝑁 ′ − 𝐹 . The leader

then encodes the original data into 𝑘 +𝑚 chunks, sends the coded

chunk to each healthy follower using AppendEntries RPCs, and

waits for responses from the followers. If the leader receives more

than 𝐹 + 𝑘 − 1 success responses within a configured time limit

(e.g., 1 second), the leader checks the ChunkInfo in the responses

and commits this entry if at least 𝐹 + 𝑘 servers (including itself)

successfully store this entry. Otherwise, the leader decreases the

encoding parameter 𝑘 by one, re-encodes the entry, and repeats the

above replication process until the log entry gets committed.

Processing in followers. Upon receiving an AppendEntries re-

quest, the follower checks the metadata of this entry to decide

whether to store it or not. For the entry that has the same term

and index as the latest one stored in the follower’s log, the follower

overwrites the old entry using the newly-received one only if the

new entry is encoded with a smaller 𝑘 ; otherwise, the follower

ignores this request. The follower overwrites the old entries by

trimming its log and appending the new entries. If the log entry has

a different term or index, the follower acts as the original Raft, e.g.,

appending the new entry. After storing the log entry, the follower

returns a response containing the ChunkInfo to the leader.

5 EVALUATION
In this section, we show the I/O performance of the key-value store

atop FlexRaft, the breakdown performance, the overhead, and the

scalability of FlexRaft. We run all experiments on Alibaba Cloud [2].

The cluster consists of at most 11 servers to run key-value service

and one individual server to send client requests. Each server is

equipped with a Xeon CPU of 8 vCPU, 32GiB DRAM, and 40GiB

ESSD cloud drive. In each experiment, each Raft server spawns

two threads in two vCPUs to execute the Raft protocol and apply

log entries, and starts a thread on-the-fly to handle any incoming

RPC request. Each client sends read/write requests with a single

thread that runs in a vCPU. The network bandwidth is 1 Gbps. We

compare FlexRaft with CRaft and HRaft in the normal case and

when some servers fail.

5.1 Write Performance
Normal write latency. We first compare the write latency of

FlexRaft with CRaft and HRaft in normal cases when no server fails

(Exp#1-2). The Raft group has five or seven servers (i.e., 𝑁 = 5 or

𝑁 = 7, respectively, where 𝑁 = 2𝐹 + 1). For the coding scheme, we

configure all possible values of 𝑘 for CRaft and use the largest 𝑘 for

HRaft; FlexRaft chooses the optimal coding scheme automatically.

For 𝑁 = 5, CRaft can use RS(3,2) or RS(2,3) as its coding scheme;

for 𝑁 = 7, CRaft can use RS(4,3), RS(3,4), or RS(2,5). HRaft uses

the largest value of 𝑘 , i.e., RS(3,2) for 𝑁 = 5 and RS(4,3) for 𝑁 = 7.

The key size is 16 B (same for the following experiments), and the

value size varies from 4KiB to 2MiB. For each value size, the client

generates 10000 PUT requests.

Figures 3 and 4 show the write latencies of CRaft, HRaft, and

FlexRaft under different value sizes when 𝑁 = 5 and 𝑁 = 7, respec-

tively. For 𝑁 = 5, CRaft (𝑘 = 3) achieves lower latencies than CRaft

(𝑘 = 2), reducing the latencies by 4.05-20.73% since CRaft (𝑘 = 3)

saves the network bandwidth cost. FlexRaft and HRaft achieve the

same performance as CRaft (𝑘 = 3) since both use the largest 𝑘 to

minimize the redundancy ratio. For 𝑁 = 7, CRaft (𝑘 = 4) achieves

the lowest latencies among all three configurations. Compared to

CRaft (𝑘 = 3) and CRaft (𝑘 = 2), CRaft (𝑘 = 4) reduces the latencies

by up to 18.15% and 35.32%, respectively. The latencies of FlexRaft

and HRaft are close to that of CRaft (𝑘 = 4) under the same value

size since they use the same coding scheme with the lowest re-

dundancy ratio. Thus, FlexRaft minimizes the network and storage

costs for log replication in normal cases.

Write performance under server failures.We evaluate the write

performance under one server failure when 𝑁 = 5 (Exp#3). We use

the same configuration as Exp#1. Figure 5 plots the write latencies

of different value sizes under one server failure. As the number

of healthy servers is below 𝐹 + 𝑘 , CRaft (𝑘 = 3) converts to full-

copy replication and HRaft replicates two additional coded chunks,

incurring higher network and storage costs. In this case, FlexRaft

varies the coding scheme to RS(2,3), achieving the lowest latencies

as CRaft (𝑘 = 2). Compared to CRaft (𝑘 = 3) and HRaft, FlexRaft

reduces the latencies by at most 32.82% and 8.43%, respectively.

We then measure the write performance under a different num-

ber of server failures when 𝑁 = 7 (Exp#4). We use the same config-

uration as Exp#2. Figures 6a and 6b show the write latencies under

one server failure and two server failures, respectively. When one

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Mi Zhang, Qihan Kang, and Patrick P. C. Lee

 0

20

40

60

80

4 16 64 128 256 512 1024 2048
Value Size (KiB)

A
ve

ra
g
e
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

CRaft (k=3)
CRaft (k=2)
HRaft (k=3)
FlexRaft

Figure 3: Exp#1 (Write latency in normal
cases when N=5).

 0

 20

 40

 60

 80

100

4 16 64 128 256 512 1024 2048
Value Size (KiB)

A
ve

ra
g
e
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

CRaft (k=4)
CRaft (k=3)
CRaft (k=2)
HRaft (k=4)
FlexRaft

Figure 4: Exp#2 (Write latency in normal
cases when N=7).

 0

 20

 40

 60

 80

100

4 16 64 128 256 512 1024 2048
Value Size (KiB)

A
ve

ra
g
e
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

CRaft (k=3)
CRaft (k=2)
HRaft (k=3)
FlexRaft

Figure 5: Exp#3 (Write latency under one
server failure when N=5).

 0

 20

 40

 60

 80

100

120

140

4 16 64 128 256 512 1024 2048
Value Size (KiB)

A
ve

ra
g

e
 W

ri
te

 L
a

te
n

c
y
 (

m
s
)

CRaft (k=4)
CRaft (k=3)
CRaft (k=2)
HRaft (k=4)
FlexRaft

(a) One server failure

 0

 20

 40

 60

 80

100

120

140

4 16 64 128 256 512 1024 2048
Value Size (KiB)

A
ve

ra
g

e
 W

ri
te

 L
a

te
n

c
y
 (

m
s
)

CRaft (k=4)
CRaft (k=3)
CRaft (k=2)
HRaft (k=4)
FlexRaft

(b) Two server failures

Figure 6: Exp#4 (Write latency under some server failures when N=7).

 0

200

400

600

800

A B C D F

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

CRaft HRaft FlexRaft

(a) One server failure

 0

200

400

600

800

A B C D F

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

CRaft HRaft FlexRaft

(b) Two server failures

Figure 7: Exp#5 (Performance under YCSB
workloads when N=7).

server fails, FlexRaft and CRaft (𝑘 = 3) achieve the lowest write

latencies among all coding schemes, while CRaft (𝑘 = 4) has the

highest latencies as it converts to full-copy replication. FlexRaft

reduces the latencies of CRaft (𝑘 = 4), CRaft (𝑘 = 2), and HRaft by

up to 54.28%, 28.97%, and 9.25%, respectively. When there are two

failed servers, FlexRaft uses RS(2,5) for log replication to minimize

the redundancy ratio and incurs the minimum network traffic and

storage overhead. Both CRaft (𝑘 = 4) and CRaft(𝑘 = 3) switch to full-

copy replication while HRaft stores more coded chunks. Compared

to CRaft (𝑘 = 4) and HRaft, FlexRaft reduces the write latencies by

37.32% and 14.10%, respectively when the value size is 2MiB.

5.2 Performance Under YCSB Workloads
We compare the performance of FlexRaft to HRaft and CRaft under

YCSB [7] workloads when 𝑁 = 7 (Exp#5). We configure the largest

value of 𝑘 (𝑘 = 4) for CRaft and HRaft. We launch four client

threads to generate 10000 requests following a Zipf distribution

with a Zipfian constant of 0.99. Here we fix the value size as 2MiB.

Figure 7 shows the throughput of CRaft, HRaft, and FlexRaft

under YCSB workload A (50% reads, 50% updates), B (95% reads, 5%

updates), C (100% reads), D (95% read-latest, 5% inserts), and F (50%

reads, 50% read-modify-writes), when there is one failed server and

two failed servers, respectively. Here, we do not show the results

of workload E (95% scans, 5% updates) as our prototype does not

support scan operations currently. Compared to CRaft and HRaft,

FlexRaft increases the throughput of write-heavy workloads (A and

F) by 37.28-115.14% and 9.47-18.76%, respectively, because FlexRaft

minimizes the network and storage costs during writes. For read-

only workload (C), all three protocols achieve similar throughput as

they directly read data from the leader. For read-intensiveworkloads

(B and D), FlexRaft improves the throughput of CRaft and HRaft by

8.90-17.88% and 1.40-5.74%, respectively. Thus, FlexRaft achieves

the best performance by reducing the network and storage costs

during writes.

N=5, f=1 N=7, f=1 N=7, f=2

CRaft
HRaft

FlexRaft
CRaft

HRaft

FlexRaft
CRaft

HRaft

FlexRaft
 0

 20

 40

 60

 80

100

120
L

a
te

n
c
y
 (

m
s
)

Client Processing Network Applying

Figure 8: Exp#6 (Breakdown performance of a put operation).

5.3 Microbenchmarks
We study the breakdown performance of a single PUT operation

in the presence of server failures (Exp#6). We divide the whole

process of a PUT operation into the following parts: 1) the latency

of sending a request from the client to the leader, denoted as client;
2) the total time spent in handling the request and encoding, called

processing; 3) the latency of sending AppendEntries RPCs in parallel
to replicate an entry, denoted as network; 4) the time of applying

a log entry to the state machine, denoted by applying. Note that
the sum of the processing time and network latency is indeed the

commit latency of a log entry. We fix the value size as 2MiB and

send 10000 PUT requests from the client. We configure the largest

value of 𝑘 for CRaft and HRaft to reduce the redundancy ratio, i.e.,

𝑘 = 3 when 𝑁 = 5, and 𝑘 = 4 when 𝑁 = 7.

Figure 8 shows the breakdown performance of CRaft, HRaft,

and FlexRaft. All three protocols have similar client, processing,

and applying latencies, as they go through the same workflow.

The network latency, depending on the network bandwidth cost,

determines the overall write latency. For 𝑁 = 5, FlexRaft reduces

the network latencies of CRaft and HRaft by 41.02% and 10.45%

under one server failure, resulting in 39.95% and 8.19% reduction of

commit latencies. For𝑁 = 7, compared to CRaft and HRaft, FlexRaft

reduces the commit latencies by 61.20% and 14.26%, respectively

Minimizing Network and Storage Costs for Consensus with Flexible Erasure Coding ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA
0

.7
0

1

0
.8

1
6

1
.2

3
4

1
.8

6

3
.1

2
6 5
.5

4

1
0

.3
7

2

1
9

.9
0

1

0
.7

0
4

0
.8

2
2

1
.2

5
3

1
.8

7
6

3
.1

1
9 5
.5

2
3

1
0

.3
9

2

1
9

.8
8

6

 0

 5

10

15

20

4 16 64 128 256 512 1024 2048
Payload Size (KiB)

R
P

C
 T

im
e
 (

m
s
)

Original
Updated

Figure 9: Exp#7 (RPC time of Appen-
dEntries requests).

 0

 25

 50

 75

100

125

150

f=0 f−>1 f=1 f−>2 f=2

C
o

m
m

it
 L

a
te

n
c
y
 (

m
s
)

Raft CRaft HRaft FlexRaft

Figure 10: Exp#8 (The over-
head of varying the coding
scheme).

 0

10

20

30

40

50

RS(4,3) RS(3,4) RS(2,5)

R
e

a
d

 L
a

te
n

c
y
 (

m
s
)

Raft FlexRaft (1) FlexRaft (10)

Figure 11: Exp#9 (Decoding
overhead during reads).

1

10

100

1000

1 5 10 20 50 100
Number of unapplied log entries

L
a

te
n

c
y
 (

m
s
)

16KiB 256KiB 2048KiB

Figure 12: Exp#10 (Duration
of the LeaderPre operation).

under one server failure, and 44.51% and 19.37%, respectively under

two server failures. The reduction of commit latencies confirms

the saving of network traffic; for example, FlexRaft reduces the

network bandwidth costs of CRaft and HRaft by 50% and 20% in

theory under two server failures when 𝑁 = 7, respectively. Thus,

FlexRaft minimizes the network bandwidth and storage costs using

a flexible coding scheme for log replication.

5.4 Overhead of FlexRaft
Overhead of updated AppendEntries RPCs.We compare the

updated AppendEntries RPCs in FlexRaft to the original RPCs in

Raft (Exp#7). We measure the completion time of one AppendEn-

tries RPC (including one request and one response) carrying one

log entry, labeled as RPC time. We vary the payload size of the log

entry from 4KiB to 2048 KiB. Figure 9 plots the RPC time of the orig-

inal and the updated AppendEntries. The RPC time of the updated

AppendEntries is almost the same as that of the original across

different payload sizes. FlexRaft only adds 16 B to the request and

8 B to the response to include the EntryType and ChunkInfo, which

are negligible compared to the payload sizes. Thus, the overhead of

the updated AppendEntries in FlexRaft is negligible.

Overhead of varying the coding scheme.We study the overhead

of varying the coding scheme in FlexRaft (Exp#8). We measure the

write latency under a different number of server failures for a group

of seven servers (i.e., 𝑁 = 7). Here, we fix the value size as 2MiB.

Figure 10 shows the average commit latencies of Raft, CRaft, HRaft,

and FlexRaft over 10000 times. All three protocols with erasure

coding achieve the same latency using RS(4,3) in normal cases,

reducing the commit latency of Raft by 69.03%. When a server

fails during log replication (labeled as 𝑓 → 1), CRaft reduces to

full-copy replication, while HRaft needs to store one more chunk

in three followers; FlexRaft re-encodes the log entry with RS(3,4)

and distributes the new chunks to the remaining followers. The

additional network costs of CRaft, HRaft, and FlexRaft are 5, 3/4,

and 5/3, respectively. Thus, the write latency of CRaft is the largest,

which is 11.67% higher than that of Raft and about four times the

normal latency with erasure coding. HRaft and FlexRaft increase

the normal write latency by 63.45% and 90.28%, respectively, but

this only occurs once when the server fails during writes. When the

server status remains unchanged under one server failure, FlexRaft

achieves the lowest commit latency and reduces the latency of

CRaft and HRaft by 61.20% and 14.26%, respectively. Note that

CRaft performs the same as Raft since one server fails. When one

more server fails during writes (i.e., 𝑓 → 2), FlexRaft switches to

RS(2,5), resulting in 11.96% higher latency than HRaft. When there

are two failed servers, FlexRaft reduces the latencies of CRaft and

HRaft by 44.51% and 19.37%, respectively. The commit latency of

 0

 50

100

150

f=1 f=2 f=3

C
o
m

m
it
 L

a
te

n
c
y
 (

m
s
) CRaft HRaft FlexRaft

(a) 𝑁 = 9

 0

 50

100

150

f=2 f=3 f=4

C
o
m

m
it
 L

a
te

n
c
y
 (

m
s
) CRaft HRaft FlexRaft

(b) 𝑁 = 11

Figure 13: Exp#11 (Commit latency of CRaft, HRaft, and
FlexRaft with a larger number of servers in a group).

CRaft under two server failures is lower than that under one failure

since CRaft has one fewer follower storing a full copy of the log

entries and reduces the network and storage costs. While FlexRaft

incurs additional network transfer by varying the coding scheme

when a server fails during the log replication, FlexRaft achieves the

lowest latency by minimizing the network and storage costs when

the cluster status remains stable (i.e., 𝑓 = 0, 1, 2).

Decoding overhead during reads.We compare the read perfor-

mance of FlexRaft to that of Raft (Exp#9). Figure 11 shows the read
latencies of Raft, FlexRaft at the first time to read (FlexRaft (1)), and

FlexRaft with 10 read times (FlexRaft (10)) under different coding

schemes when 𝑁 = 7. Compared to Raft, FlexRaft (1) increases the

read latencies by 88.60-92.35%, while FlexRaft (10) only increases

by 4.34-6.62%. Thus, the decoding operation does not harm the read

performance too much when the leader does not crash frequently

(i.e., the leader already stores a full copy for read requests).

Duration of the LeaderPre operation under the leader failure.
We measure the duration of the LeaderPre operation when the

leader fails and a new leader is elected; here, we consider 𝑁 = 7

(Exp#10). As the LeaderPre operation only recovers the unapplied

log entries, we vary the number of unapplied log entries (from 1 to

100) with different value sizes. Figure 12 shows the duration of the

LeaderPre operation, which increases with the number of unapplied

log entries. For the small values (e.g., 16 KiB), it takes about 4ms

and 14ms to recover 10 and 100 log entries, respectively. For the

values with a medium size (e.g., 256 KiB), the LeaderPre operation

lasts about 18ms and 136ms when there are 10 and 100 unapplied

log entries, respectively. For the large values (e.g., 2MiB), it takes

about 106ms to recover 10 entries and 1.4 s to recover 100 entries.

Thus, the newly-elected leader can quickly complete the LeaderPre

operation, making a limited impact on system availability.

5.5 Scalability of FlexRaft
We evaluate the performance of CRaft, HRaft, and FlexRaft with a

larger number of servers in a group (Exp#11). As all three protocols
achieve the lowest commit latency using the largest available value

of 𝑘 , we compare their commit latencies under a different number

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Mi Zhang, Qihan Kang, and Patrick P. C. Lee

of server failures. We set the payload size of each log entry as

2MiB and plot the average commit latencies over 10000 times.

Figure 13 shows the commit latencies of CRaft, HRaft, and FlexRaft

under a different number of server failures in a group of 𝑁 = 9

and 𝑁 = 11 servers. For a group of 9 servers, FlexRaft reduces

the commit latency of CRaft and HRaft by 43.20-71.00% and 17.14-

24.87%, respectively. Also, FlexRaft reduces the commit latency of

CRaft and HRaft by 43.12-71.45% and 24.01-31.47%, respectively,

when more than one server fails in a group of 11 servers.

6 RELATEDWORK
Improving the performance of consensus protocols. Dis-
tributed systems employ consensus algorithms to provide high relia-

bility and availability for upper-layer applications. Paxos [16, 17] is

one commonly-used consensus protocol in distributed systems,

such as Chubby [3] and Spanner [3]. Many variants of Paxos

[1, 5, 18, 19, 24, 28] have been proposed in the literature to im-

prove the performance of distributed systems built based on the

Paxos algorithm. For example, EPaxos [19, 24] extends vanilla Paxos

in a decentralized fashion to achieve optimal commit latency.

Raft [21] is a widely used consensus algorithm designed for

easy understanding and implementation, which is equivalent to

Multi-Paxos. There have been many optimizations proposed to

improve the performance of the original raft protocols in recent

years [4, 15, 26]. ParallelRaft [4] realizes a parallelized version

of Raft, which removes the original Raft’s strict serialization for

high I/O concurrency. HovercRaft [15] extends the Raft protocol

by eliminating CPU and I/O bottlenecks to achieve both scalability

and fault tolerance. KV-Raft [26] introduces commit return and

immediate read into vanilla Raft, to accelerate the write and read

performance of distributed key-value storage systems respectively.

Optimizing consensus algorithms with erasure coding. Some

studies [14, 20, 25, 27] extend the replication-based Paxos and

Raft protocols with erasure coding (based on RS codes [22]) for

higher performance with lower overhead. Erasure coding has been

widely applied in distributed storage systems [11, 12] to protect

data against server failures with a low redundancy ratio. The adop-

tion of erasure coding in consensus algorithms introduces a new

approach to improve the overall system performance by reducing

the redundancy overhead. RS-Paxos [20] is the first consensus pro-

tocol that combines erasure coding into the Paxos protocol, but

reduces the liveness level. Pando [25] leverages erasure coding in

geo-distributed storage to reduce costs for preserving consistency.

CRaft [27] applies erasure coding to Raft, but it degrades to full-copy

replication when the number of failed servers exceeds a certain

threshold. HRaft [14] addresses the degradation problem of CRaft

by maintaining additional coded data in healthy servers instead of

switching to full-copy replication when server failure occurs.

7 CONCLUSIONS
This paper proposes FlexRaft which minimizes the network and

storage costs by dynamically adjusting the coding scheme used for

log replication in Raft. It uses the optimal coding scheme with the

available largest 𝑘 based on the server status. When varying the

coding scheme during writes, FlexRaft restricts the overwriting of

the coded chunks and updates the AppendEntries RPCs to make

sure that all servers store the right coded chunks.

ACKNOWLEDGMENTS
This work is supported by the Major Research Plan of NSFC (Grant

No. 92270202), the Strategic Priority Research Program of CAS

(Grant No. XDB44030200), and Research Grants Council of Hong

Kong (GRF 14214622 and AoE/P-404/18). The corresponding author

is Patrick P. C. Lee.

REFERENCES
[1] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik Kosar. 2019.

WPaxos: Wide Area Network Flexible Consensus. IEEE Transactions on Parallel
and Distributed Systems 31, 1 (2019), 211–223.

[2] Alibaba. -. Alibaba cloud. https://us.alibabacloud.com/

[3] Mike Burrows. 2006. The Chubby Lock Service for Loosely-Coupled Distributed

Systems. In Proc. of USENIX OSDI.
[4] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng, Yuhui

Wang, and GuoqingMa. 2018. PolarFS: An Ultra-low Latency and Failure Resilient

Distributed File System for Shared Storage Cloud Database. In Proc. of VLDB
Endowment.

[5] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2021. PigPaxos:

Devouring the Communication Bottlenecks in Distributed Consensus. In Proc. of
ACM SIGMOD.

[6] Yu Lin Chen, Shuai Mu, Jinyang Li, Cheng Huang, Jin Li, Aaron Ogus, and

Douglas Phillips. 2017. Giza: Erasure Coding Objects Across Global Data Centers.

In Proc. of USENIX ATC.
[7] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proc. of ACM
SoCC.

[8] Delta V Software. -. RCF. https://www.deltavsoft.com/

[9] etcd. -. etcd. https://etcd.io/

[10] Facebook. -. RocksDB. https://github.com/facebook/rocksdb/tree/v7.3.1

[11] Hadoop. -. HDFS 3.1. https://hadoop.apache.org/release/3.1.1.html

[12] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit

Gopalan, Jin Li, Sergey Yekhanin, et al. 2012. Erasure Coding in Windows Azure

Storage. In Proc. of USENIX ATC.
[13] Intel. -. ISA-L. https://github.com/intel/isa-l

[14] Yulei Jia, Guangping Xu, Chi Wan Sung, Salwa Mostafa, and Yulei Wu. 2022.

HRaft: Adaptive Erasure Coded Data Maintenance for Consensus in Distributed

Networks. In Proc. of IEEE IPDPS.
[15] Marios Kogias and Edouard Bugnion. 2020. HovercRaft: Achieving Scalability

and Fault-tolerance for Microsecond-scale Datacenter Services. In Proc. of ACM
EuroSys.

[16] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. on Comput. Syst.
16, 2 (1998), 133–169.

[17] Leslie Lamport et al. 2001. Paxos Made Simple. ACM Trans. on Sigact News 32, 4
(2001), 18–25.

[18] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building

Efficient Replicated State Machines for WANs. In Proc. of USENIX OSDI.
[19] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2013. There Is More

Consensus in Egalitarian Parliaments. In Proc. of ACM SOSP.
[20] Shuai Mu, Kang Chen, YongweiWu, andWeimin Zheng. 2014. When Paxos Meets

Erasure Code: Reduce Network and Storage Cost in State Machine Replication.

In Proc. of ACM HPDC.
[21] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable

Consensus Algorithm. In Proc. of USENIX ATC.
[22] Irving S Reed and Gustave Solomon. 1960. Polynomial Codes over Certain Finite

Fields. J. Soc. Indust. Appl. Math. 8, 2 (1960), 300–304.
[23] TiKV. -. TiKV: A Distributed Transactional Key-Value Database. https://tikv.org

[24] Sarah Tollman, Seo Jin Park, and John Ousterhout. 2021. EPaxos Revisited. In

Proc. of USENIX NSDI.
[25] Muhammed Uluyol, Anthony Huang, Ayush Goel, Mosharaf Chowdhury, and

Harsha V Madhyastha. 2020. Near-Optimal Latency Versus Cost Tradeoffs in

Geo-Distributed Storage. In Proc. of USENIX NSDI.
[26] Yangyang Wang, Zikai Wang, Yunpeng Chai, and Xin Wang. 2021. Rethink the

Linearizability Constraints of Raft for Distributed Key-Value Stores. In Proc. of
IEEE ICDE.

[27] Zizhong Wang, Tongliang Li, Haixia Wang, Airan Shao, Yunren Bai, Shangming

Cai, Zihan Xu, and DongshengWang. 2020. CRaft: An Erasure-Coding-Supported

Version of Raft for Reducing Storage Cost and Network Cost. In Proc. of USENIX
FAST.

[28] Hanyu Zhao, Quanlu Zhang, Zhi Yang, Ming Wu, and Yafei Dai. 2018. SDPaxos:

Building Efficient Semi-Decentralized Geo-replicated State Machines. In Proc. of
ACM SoCC.

https://us.alibabacloud.com/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Basics of Raft Consensus
	2.2 Erasure-Coded Consensus Protocols
	2.3 Motivating Example

	3 Design of FLEXRAFT
	3.1 Choice of Coding Schemes
	3.2 Varied Coding Scheme
	3.3 Server Recovery
	3.4 Safety Guarantee

	4 Implementation
	5 Evaluation
	5.1 Write Performance
	5.2 Performance Under YCSB Workloads
	5.3 Microbenchmarks
	5.4 Overhead of FlexRaft
	5.5 Scalability of FlexRaft

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

