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Stragglers (i.e., nodes with slow performance) are prevalent and incur performance instability in large-
scale storage systems, yet it is challenging to detect stragglers in practice. We make a case by 
showing how erasure-coded caching provides robust straggler tolerance without relying on timely and 
accurate straggler detection, while incurring limited redundancy overhead in caching. We first analytically 
motivate that caching only parity blocks can achieve effective straggler tolerance. To this end, we present
POCache, a parity-only caching design that provides robust straggler tolerance. To limit the erasure 
coding overhead, POCache slices blocks into smaller subblocks and parallelizes the coding operations 
at the subblock level. It further adopts a configurable straggler-aware cache algorithm (CSAC) that takes 
into account both file access popularity and straggler estimation to decide which parity blocks should 
be cached. CSAC enables POCache to configure various cache admission and eviction algorithms with 
straggler awareness and supports cache prefetching. We implement a POCache prototype atop Hadoop 
3.1 HDFS, while preserving the performance and functionalities of normal HDFS operations. Extensive 
experiments on both local and Amazon EC2 clusters show that in the presence of stragglers, POCache
can reduce the read latency by up to 87.9% compared to vanilla HDFS.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Large-scale storage systems are susceptible to high performance 
variability or long tails for various reasons [26], such as hardware 
slowdown [32,34], load imbalance [58], resource sharing [68], and 
workload skewness [22,76]. Such performance variability and long 
tails are often caused by the presence of stragglers (also known as 
“gray failures” [38] or “fail-slow faults” [32]), which refer to the 
nodes that remain operational but with slow performance. Strag-
glers are problematic, as they easily introduce performance insta-
bility that degrades user experience.

Unfortunately, detecting and pinpointing stragglers is non-
trivial and may take hours or even months, due to the com-
plexity of root cause analysis and limited knowledge about the 
full hardware stack [32]. Some systems address straggler tolerance 

✩ A preliminary version [75] of this paper was presented at the 35th International 
Conference on Massive Storage Systems and Technology (MSST 2019). In this ex-
tended version, we analyze the effect of straggler tolerance with different caching 
schemes in the face of correlated failures, propose a configurable straggler-aware 
algorithm for POCache and include additional evaluation results.
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via selective replication, which caches replicas for popular objects 
[14,24,35,64] to avoid accessing stragglers (i.e., hotspots with over-
loaded requests) under skewed workloads. However, the popularity 
of objects can sharply change in a short period of time [39], 
and caching all objects is infeasible due to the high redundancy 
overhead of replication. Thus, selective replication is arguably inef-
fective when the available cache space is limited [39,58].

This motivates us to study how to provide robust straggler tol-
erance for distributed storage systems in practice; by robust, we 
mean that our straggler tolerance design does not rely on ac-
curate detection of stragglers. We explore erasure-coded caching, 
which caches the erasure-coded blocks with limited redundancy 
penalty. Erasure coding has been widely studied in the literature to 
provide fault tolerance for distributed storage systems against fail-
stop failures [31,37] and fail-slow failures [42,43]. Here, we explore 
how erasure coding, coupled with caching, tolerates stragglers that 
cause performance variability and long tails in a real-world dis-
tributed storage system.

Although previous studies have also explored erasure-coded 
caching (e.g., [9,10,33,58]), there remain several challenges to make 
erasure-coded caching feasible in practical distributed storage sys-
tems. First, the encoding and decoding operations of erasure cod-
ing add non-negligible latency to the I/O requests that access the 
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in-memory cache (e.g., 30% in EC-Cache [58]), thereby degrading 
the normal I/O performance without coding operations. Second, 
designing an appropriate cache algorithm specifically for erasure-
coded caching remains non-trivial. In particular, we need to ad-
dress the issue of which erasure-coded data should be cached 
based on the file access popularity in the presence of stragglers. 
Finally, we should properly integrate erasure-coded caching into 
existing distributed storage systems, without changing the func-
tionalities of normal operations.

In this paper, we propose POCache, a parity-only caching 
scheme that achieves robust straggler tolerance without relying 
on accurate straggler prediction. The main idea of POCache is to 
cache only parity blocks (i.e., the redundant blocks encoded from 
file data), which we show can effectively tolerate stragglers with 
limited caching and bandwidth overhead. POCache targets on the 
write-once-read-many workloads, in which files cannot be modified 
once being written. We summarize our contributions as follows.

• We show via mathematical analysis that caching only parity 
blocks provides more effective straggler tolerance than caching 
only data blocks (as in selective replication). In particular, 
caching only one parity block effectively mitigates the impact 
of stragglers. Our analysis provides several insights that guide 
our POCache design.

• We design POCache, a parity-only caching scheme that provides 
robust straggler tolerance. POCache mitigates erasure coding 
overhead via two mechanisms, namely block slicing and incre-
mental encoding, in which we partition blocks into smaller sub-
blocks and parallelize coding operations at the subblock level.
POCache caches parity subblocks rather than the whole parity 
blocks.

• We design a configurable straggler-aware cache algorithm (CSAC) 
that decides which parity blocks should be cached by taking 
into account both file access popularity and straggler estima-
tion. Compared to the straggler-aware cache algorithm in our 
conference version [75], CSAC is configurable, such that it can 
incorporate different cache replacement policies with straggler 
awareness. It takes a best-effort approach to cache the par-
ity blocks of popularly accessed files based on the estimation 
of which nodes are likely to be stragglers. CSAC also enables
POCache to prefetch the parity blocks of the files that are af-
fected by the estimated stragglers into the cache space. Note 
that our straggler estimation may be inaccurate (i.e., stragglers 
are falsely detected), yet POCache still provides robust straggler 
tolerance through parity-only caching.

• We implement a POCache prototype atop Hadoop 3.1 HDFS [3]. 
We show that our implementation preserves the original I/O 
workflows, storage layouts, and fault tolerance of HDFS.

• We evaluate POCache on both local and Amazon EC2 clusters. 
We show that compared to reads in vanilla HDFS, POCache can 
reduce the read latency by up to 87.9% in the presence of strag-
glers, and suppress the read latency in the presence of stragglers 
to almost identical to that in the normal case where no strag-
gler exists. We also conduct various experiments to justify the 
robustness of straggler tolerance of POCache.

Compared to the work in [75], we make the following new con-
tributions. We first analyze the effect of different caching schemes 
in the presence of correlated stragglers, by quantifying the ra-
tio of read requests that hit stragglers. Second, we propose and 
implement a configurable straggler-aware cache algorithm (CSAC), 
which supports various cache admission and eviction algorithms 
and cache prefetching. Furthermore, we evaluate the performance 
of POCache on running MapReduce workloads and the caching ef-
ficiency of CSAC.
158
Fig. 1. Contiguous and striping layouts (only data blocks are shown here).

The source code of our prototype POCache is available at:
http://adslab .cse .cuhk.edu .hk /software /pocache.

The rest of the paper proceeds as follows. Section 2 intro-
duces the background details of erasure coding, and motivates that 
parity-only caching can reduce the probability of hitting stragglers. 
Section 3 presents the design of POCache. Section 4 describes 
the implementation details of POCache on Hadoop 3.1 HDFS. Sec-
tion 5 shows our evaluation results on both local and Amazon EC2 
clusters. Section 6 reviews related work, and finally Section 7 con-
cludes the paper.

2. Background and motivation

In this section, we analyze the effect of straggler tolerance by 
caching only parity blocks. We then pose the challenges of apply-
ing parity-only caching to distributed storage systems with differ-
ent data layouts.

2.1. Basics

Erasure coding: Erasure coding provably incurs much less redun-
dancy than replication under the same degree of fault tolerance 
[66]. At a high level, an erasure code is usually configured by two 
parameters namely n and k, where n > k. An (n, k) erasure code 
encodes, via Galois Field arithmetic [56], k fixed-size uncoded data 
blocks to generate another m = n − k coded parity blocks of the 
same size, such that the collection of the n data and parity blocks 
forms a stripe. An erasure code is said to satisfy the Maximum Dis-
tance Separable (MDS) property if any k blocks in a stripe suffice 
to reconstruct (or decode) the original k data blocks. A storage 
system typically stores multiple stripes, each of which is inde-
pendently encoded. A well-known family of MDS erasure codes is 
Reed-Solomon (RS) codes [59], which are extensively employed in 
current commodity storage systems (e.g., Ceph [67], QFS [54], and 
HDFS [3]). Many repair-efficient techniques (e.g., [46,47,52]) have 
recently been proposed to speed up repair operations in erasure 
coding. In this paper, we explore how to couple erasure coding 
with caching to provide straggler tolerance.

Data layouts: Distributed storage systems divide files into logi-
cal blocks and store them across multiple nodes by following ei-
ther the contiguous layout or the striping layout. For the contiguous 
layout, the storage system stores sequential logical blocks across 
nodes (one block per node). This design significantly reduces disk 
seeks, but limits the parallel access. For the striping layout, the 
storage system decomposes a logical block into smaller units and 
stores them across nodes. Fig. 1 depicts an example of both con-
tiguous and striping layouts, where a file is partitioned into three 
logical blocks of size 2 MiB each. In this example, the contiguous 
layout places one logical block in a node, while the striping layout 
breaks a logical block into two smaller units (i.e., 1 MiB per unit) 
and stores the resulting six units across three nodes. Thus, read-
ing a file in the contiguous layout can be done by retrieving the 
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Fig. 2. Example of reading a file with caching in Section 2.2.

logical blocks one by one, while in the striping layout it needs to 
assemble the smaller units into the original file. Both layouts are 
supported in current storage systems (e.g., HDFS of Hadoop ver-
sion 3 [3]).

Stragglers: When reading a file, any straggler that stores the blocks 
of a file would increase the read latency, regardless of which data 
layout the distributed storage system adopts. For the contiguous 
layout, the penalty incurred by the stragglers is added to the over-
all read latency as the blocks are retrieved sequentially. For the 
striping layout, the latency of reading a file is equal to the time of 
reading from the slowest node.

2.2. Analysis

We show via a toy example how erasure coding addresses 
straggler tolerance. We first review the procedure of reading a 
file without considering access skewness. Suppose that the k data 
blocks of a file are distributed in k storage nodes (Fig. 2). A client 
should retrieve all the k data blocks when reading the file, and 
the read time increases if any of the k storage nodes becomes 
a straggler. To tolerate stragglers without altering the underlying 
data layout and fault tolerance, we can introduce a small group of 
nodes and let them cache some redundant data. Suppose that we 
introduce c cache nodes (where c ≤ k) to cache c blocks (with one 
block per cache node). To read the file, the client can issue k + c
read requests to the k storage nodes and c cache nodes, and recon-
struct the file once all its k data blocks are successfully received. 
Since the client has more choices to read the file, caching addi-
tional blocks can tolerate stragglers caused by either independent 
failures or correlated failures.

2.2.1. Independent stragglers only
Let ps and pc be the probabilities that a storage node and 

a cache node become stragglers, respectively. We consider two 
caching schemes: data-only caching and parity-only caching. Let P
be the probability of hitting at least one straggler when reading a 
file. We calculate P under both caching schemes as follows.

• Data-only caching: Data-only caching caches the replicas of a 
subset of data blocks in the cache nodes. Since we cannot tell 
certainly which nodes would become stragglers, we randomly 
select c out of k data blocks and cache them in the c cache 
nodes. Thus, in data-only caching, there are c blocks that have 
a replica stored in a cache node (in addition to the block copy 
in a storage node), and another k − c blocks that have only a 
block copy stored in a storage node without being cached. Data-
only caching can provide straggler tolerance as long as all the 
blocks residing in a straggler are cached. We compute P under 
data-only caching as:
159
P = 1 −
c∑

i=0

(
c

i

)
· ps

i · (1 − ps)
k−i

︸ ︷︷ ︸
i storage nodes are stragglers

· (1 − pc)
i︸ ︷︷ ︸

i cache nodes are normal

.

Note that selective replication also caches data blocks. In partic-
ular, it selects the data blocks that are most likely to reside in 
stragglers to cache. In our toy example, the probability that each 
storage node becomes a straggler is identical, so selective repli-
cation is actually identical to data-only caching that we consider 
here.

• Parity-only caching: Parity-only caching caches c parity blocks in 
the cache nodes, which are generated from k data blocks via 
an (n, k) MDS code (i.e., n = k + c). As any k out of the k + c
data and parity blocks can reconstruct the original file (i.e., the 
MDS property), we can retrieve any k blocks from the k storage 
nodes and c cache nodes. The probability P under parity-only 
caching is now equal to the probability that more than c blocks 
are stored in the straggler nodes, i.e.,

P =1 −
c∑

i=0

i∑
j=0

(
k

j

)
· ps

j · (1 − ps)
k− j

︸ ︷︷ ︸
j storage nodes are stragglers

·

(
c

i − j

)
· pc

i− j · (1 − pc)
c−i+ j

︸ ︷︷ ︸
(i − j) cache nodes are stragglers

.

Fig. 3 depicts P under no-caching (i.e., c = 0), data-only 
caching, and parity-only caching for different combinations of k, 
c, ps and pc . Fig. 3(a) plots the probability versus k with c = 1, 
ps = 0.005, and pc = 0.005. P increases linearly with k under 
no-caching and data-only caching, while parity-only caching re-
mains to have a small value of P as k increases. Fig. 3(b) plots 
P versus c with k = 4, ps = 0.005, and pc = 0.005. For parity-only 
caching, caching one parity block already keeps P very low (2.48E-
4), and further increasing c only reduces P slightly. Fig. 3(c) plots 
P versus ps with k = 4, c = 1, and pc = 0.005. Parity-only caching 
with c = 1 can still keep P very low even when ps increases to 
0.01, while P under data-only caching increases linearly with ps . 
Fig. 3(d) plots P versus pc with k = 4, c = 1, and ps = 0.005. It 
shows that pc has a negligible effect on the probability of hitting 
stragglers. For data-only caching and parity-only caching, P with 
pc = 0.01 remains almost the same as that when each cache node 
would never be a straggler (i.e., pc = 0).

2.2.2. Correlated stragglers
Modern data centers group nodes into racks, where the nodes 

in the same rack are connected by a top-of-rack (ToR) switch and 
different racks are interconnected by a network core [13]. In such a 
hierarchical data center, the blocks of a file are distributed across 
different nodes in distinct racks (aka. flat placement) [31,37], or 
fewer racks where each rack stores more than one block (aka. hi-
erarchical placement) [74]. Thus, reading a file needs to access data 
from different number of racks under different block placement 
policies.

Correlated failures make all nodes in a rack become straggler 
nodes, introducing correlated stragglers. We denote the probability 
of rack slowdown and the number of blocks stored in each rack by 
pr and a respectively. Here, we assume both the number of data 
blocks k and the blocks in cache c are multiples of a for simplicity. 
Thus, k data blocks are distributed across r = k

a racks. To maximize 
the rack-level straggler tolerance, the blocks in cache are stored in 
different racks from the racks where data blocks are stored. We 
calculate P under both data-only caching and parity-only caching 
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Fig. 3. Probability P that a read hits a straggler for different combinations of k, c, ps , and pc under no-caching (NC), data-only caching (DoC), and parity-only caching (PoC). 
Here, we consider independent stragglers only.
in the presence of independent and correlated stragglers as fol-
lows.

• Data-only caching: As we explained previously, data-only caching 
can only tolerate the straggler nodes which have an exact replica 
in cache. The same applies to the straggler tolerance caused by 
rack slowdown. That is, data-only caching can provide straggler 
tolerance when the blocks residing in the slow racks have the 
cached replicas. Thus, the probability P under data-only caching 
in the best cases (i.e., tolerating the maximum number of rack 
failures) is:

P =1 −
c
a∑

i=0

c−ia∑
j=0

( c
a

i

)
· pr

i · (1 − pr)
r−i

︸ ︷︷ ︸
storage nodes in i slow racks are stragglers

·

(
c − ia

j

)
· ps

j · (1 − ps)
k−ia− j

︸ ︷︷ ︸
j storage nodes in normal racks are stragglers

·

(1 − pr)
� ia+ j

a � · (1 − pc)
ia+ j︸ ︷︷ ︸

(ia + j) cache nodes are normal

.

• Parity-only caching: With c parity blocks in cache, parity-only 
caching tolerates up to c blocks residing in straggler nodes or 
racks. Therefore, the probability P under parity-only caching in 
the best cases equals to:

P =1 −
c
a∑

i=0

c−ia∑
j=0

c−ia− j∑
l=0

� l
a �∑

v=0

(
r

i

)
· pr

i · (1 − pr)
r−i

︸ ︷︷ ︸
·

storage nodes in i slow racks are stragglers
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(
k − ia

j

)
· ps

j · (1 − ps)
k−ia− j

︸ ︷︷ ︸
j storage nodes in normal racks are stragglers

·

pr
v(1 − pr)

( c
a −v)︸ ︷︷ ︸

cache nodes in v slow racks are stragglers

·

(
c − va

l − va

)
· pc

l−va · (1 − pc)
c−l

︸ ︷︷ ︸
(l − va) cache nodes in normal racks are stragglers

.

Fig. 4 shows the probability P of no-caching, data-only caching, 
and parity-only caching under flat and hierarchical block place-
ment respectively, in the face of independent and correlated strag-
glers. Fig. 4 (a) depicts the probability P versus k with a = 1, c = 1, 
pr = 0.001, ps = 0.005, and pc = 0.005. Here, k data blocks are dis-
tributed across k racks. The probability is higher than that without 
rack slowdown in Fig. 3 (a). Parity-only caching still achieves a 
small probability P (1.91E-3) as k increases. Fig. 4 (b) shows the 
probability P under hierarchical placement where a = 2. The prob-
ability of no-caching here is slightly lower than that under flat 
placement because the blocks are distributed across less racks. We 
cache two blocks to tolerate one rack slowdown, i.e., c = 2. Parity-
only caching achieves a probability of 3.33E-4 or lower while data-
only caching has a probability of up to 4.32E-2 when k is less than 
or equal to 10. From the above analysis, parity-only caching pro-
vides robust straggler tolerance against independent and correlated 
failures.

2.3. Challenges

While the above analysis demonstrates the effectiveness of 
parity-only caching in straggler mitigation, three challenges still re-
main when we apply parity-only caching to real-world distributed 
storage systems.
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Fig. 4. Probability P that a read hits a straggler for different block placement policies under no-caching (NC), data-only caching (DoC), and parity-only caching (PoC) where 
the cached blocks can tolerate one rack slowdown (i.e., c = a). Here, we consider both independent and correlated stragglers (ps = 0.005, pc = 0.005, pr = 0.001).
Table 1
Latencies versus block size for RS codes under (n, k) = (5, 4).

Block size Network 
transfer

Memory 
access

Encoding/
decoding

16 MiB 51.2 ms 9.7 ms 7.4 ms
32 MiB 102.4 ms 19.2 ms 14.8 ms
64 MiB 204.8 ms 38.4 ms 29.7 ms
128 MiB 409.6 ms 76.6 ms 56.3 ms

Note that the time of network transfer is calculated as transferring four blocks 
through 10 Gbps network.

First, applying erasure coding to large-size blocks easily in-
curs non-negligible decoding (resp. encoding) overhead to the read 
(resp. write) path, thereby increasing the read (resp. write) la-
tency. To demonstrate it, we measure the latencies of encoding 
and decoding operations of the erasure coding library ISA-L [5]
using the RawErasureCoderBenchmark tool in Hadoop 3.1. Ta-
ble 1 shows the latencies of network transfer, memory access, 
encoding, and decoding versus different block sizes for RS codes 
under (n, k) = (5, 4). The memory access as well as the encod-
ing and decoding operations have comparable latencies, where the 
total latency in memory access and encoding/decoding accounts 
for approximately 33% of the latency in network transfer. Similar 
observations are also validated by EC-Cache [58], in which the de-
coding time takes about 30% of the read time. However, previous 
studies (e.g., EC-Cache [58] and Sprout [10]) do not address the 
encoding and decoding overhead when employing erasure-coded 
caching. Our measurement indicates that to sustain the perfor-
mance improvement of parity-only caching, we should reduce the 
encoding/decoding overhead in the I/O path.

Second, how to design an efficient cache algorithm to mitigate 
the impact of stragglers remains a challenging issue. Many cache 
algorithms aim to maximize the hit ratio (i.e., the ratio that the re-
quested data has been cached) by making caching decisions based 
on the file access pattern only. For example, EC-Cache [58] directly 
employs the least recently used (LRU) cache algorithm, which is 
also the default cache algorithm in Alluxio [45]. Existing cache al-
gorithms study the tradeoff between the hit ratio and the latency 
when different objects have different access costs [21,44,62,71], 
but how to manage the parity-only cache space (i.e., which parity 
blocks to cache) to minimize the probability of hitting stragglers 
still remains an open issue.

Last but not least, our parity-only caching design should be 
independent of the underlying storage systems; in other words, 
our design can be generalized for different storage systems and 
support the upper-layer applications. The dependency on the char-
acteristics of a specific storage systems can restrict the application 
of the design to other systems; for example, Sprout [10] assumes 
the caching data resides on the client side or in a proxy-based 
caching tier. Furthermore, it is important that our design should 
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have limited overhead on the I/O workflows of the underlying stor-
age systems.

3. POCache design

We present POCache, a parity-only caching approach that pro-
vides robust straggler tolerance for distributed storage systems.
POCache aims for the following goals: (i) mitigating the encod-
ing and decoding overhead to avoid degrading I/O performance; 
(ii) managing the cache space to decrease the probability of hit-
ting stragglers for I/O requests; (iii) preserving the data layouts 
and access protocols of the underlying storage systems to achieve 
generality.

We summarize the main ideas of POCache as follows. We first 
mitigate the coding overhead via block slicing and incremental 
encoding (Section 3.1) to exploit the full parallelism of encoding 
and decoding operations. Note that both features have been shown 
to significantly reduce the repair latency in erasure-coded storage 
[46,47,52]; here, we leverage these features to mitigate the encod-
ing and decoding overhead in the context of caching and hence 
achieve effective straggler tolerance. We then design a configurable 
straggler-aware cache algorithm that carefully manages the cache 
space based on the file access popularity and the estimation of 
the straggler existence (Section 3.3). Currently, POCache supports 
write-once-read-many workloads (Section 1) and does not support 
updates, appends, or partial file writes. Such a scenario is reason-
able for HDFS, which is designed for data analytics (e.g., MapRe-
duce) [3].

We assume that parity blocks are generated on a per-file ba-
sis, such that each file is of large size and spans k > 1 data blocks 
that can be encoded together. Such an assumption holds for cloud 
storage workloads. For example, Microsoft OneDrive is reportedly 
dominated by large objects, in which almost 90% of objects are 
over 100 MiB [23]. POCache is designed to reduce the access la-
tencies of a file in the presence of stragglers. Note that the coding 
parameters (n, k) in POCache are independent of those of the un-
derlying storage systems.

3.1. Mitigating coding overhead

Block slicing: Our observation is that the actual erasure coding 
functionalities under Galois Field arithmetic (Section 2) perform in 
small-size coding units (e.g., bytes) [56]. Specifically, the n blocks 
of a stripe are divided into coding units, such that the coding 
units at the same offset across the n blocks are independently 
encoded/decoded. Thus, we can slice blocks into smaller-size sub-
blocks (e.g., 1 MiB) and perform encoding/decoding at the subblock 
level. Fig. 5 shows the idea of block slicing, in which the subblocks 
at the same offset of the n blocks in a stripe form a substripe. 
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Fig. 5. Block slicing. Di and C j respectively denote the i-th data block and the j-th parity block, where 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ m − 1.
Instead of encoding k large blocks to generate parity blocks for 
the whole stripe, we divide the stripe into multiple substripes, 
in which we encode k data subblocks in each substripe to gen-
erate m = n − k parity subblocks. Since the substripes are indepen-
dently encoded/decoded, the encoding/decoding operations across 
different substripes can be parallelized, and the encoding/decoding 
overhead can be masked. For each parity block being cached, we 
now cache its corresponding parity subblocks.

Incremental encoding: In addition to block slicing, we employ in-
cremental encoding to further exploit the parallelization of encod-
ing when we generate parity subblocks to cache. Our observation 
is that in practical erasure codes (e.g., RS codes), a parity sub-
block is encoded via a linear combination of k data subblocks, and 
the addition operations are associative. Thus, we can incrementally 
compute a parity subblock from the data subblocks one by one, 
instead of waiting for all k data subblocks to be available before 
starting the encoding operation. Note that incremental encoding 
does not increase the computing cost of encoding. This can be 
regarded as pipelining the arrival of blocks with encoding. If the 
blocks never arrive, incremental encoding will receive the ending 
mark of the data stream and complete the encoding process; oth-
erwise, incremental encoding waits for next blocks to arrive.

We use an example to elaborate the idea. Suppose that a parity 
subblock c0 is generated from k = 3 data subblocks d0, d1, and d2

as: c0 = α0d0 + α1d1 + α2d2, where α0, α1, and α2 are encoding 
coefficients, and both the addition and multiplication operations 
are in Galois Field arithmetic. Incremental encoding decomposes 
the encoding operation into three steps: (i) c′

0 = α0d0 (when d0

is written); (ii) c′′
0 = c′

0 + α1d1 (when d1 is written); and (iii) 
c0 = c′′

0 + α2d2 (when d2 is written), where c′
0 and c′′

0 are inter-
mediate results. Thus, incremental encoding can start the encoding 
operation as soon as a data subblock arrives while a stream of data 
subblocks is written, and both the write and incremental encoding 
operations are done in parallel.

3.2. Choice of (n, k) erasure codes

We now discuss how to select an appropriate (n, k) erasure 
code, so as to tolerate stragglers effectively while achieving low 
usage of the cache space.

Selection of k: The selection of k determines the cache space usage. 
With a smaller k, POCache forms more stripes for a file and hence 
caches more parity blocks. In practice, the value of k is jointly de-
termined by the distribution of file sizes and the available capacity 
of the cache space. We evaluate the impact of different values of k
in Section 5.

Selection of n: Recall that caching only one parity block can reduce 
the probability of hitting stragglers even under different values of 
k (Fig. 3(a)). Thus, we set n, such that m = n − k = 1, in our imple-
mentation and evaluation based on the value of k.
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3.3. Configurable straggler-aware cache algorithm

We propose a configurable straggler-aware cache (CSAC) algo-
rithm to manage the cache space, with the objective of minimizing 
the straggler hit ratio (i.e., the ratio of read requests that hit strag-
glers). We design CSAC by taking into account both the estimation 
of existing stragglers and file access popularity. In particular, CSAC 
is configurable, in the sense that it is extensible for different cache 
management algorithms depending on the workload characteris-
tics.

Straggler estimation: CSAC considers the existence of stragglers 
when making decisions on caching. To minimize the straggler hit 
ratio, CSAC prefers to cache parity blocks for the files that would 
be affected by stragglers. Thus, CSAC estimates the presence of 
stragglers based on the monitoring information. Specifically, CSAC 
identifies the straggler nodes and records them in a straggler list as 
follows. It periodically collects each node’s service rate (denoted by 
ν), defined as the ratio of the amount of data being served to the 
service time being taken. It calculates the mean value (denoted by 
μ) and standard deviation (denoted by σ ) of all service rates. Fi-
nally, it identifies the stragglers according to the three-sigma rule
[57], in which the nodes whose ν < μ − 3σ are treated as abnor-
mal and included in the straggler list.

Generalized cache management: To capture the file access popu-
larity, CSAC supports generalized cache management by allowing 
both the cache admission and cache eviction algorithms to be con-
figurable.

• Cache admission: The cache admission algorithm decides whether 
to cache the parity blocks of an accessed file that has no cached 
parity blocks. A simple cache admission algorithm is cache-upon-
access (i.e., always caching the parity blocks of the accessed file). 
Other algorithms can take into account the frequency [27] and 
object size [20] information.

• Cache eviction: The cache eviction algorithm decides which par-
ity blocks of a file to evict from cache when the available cache 
space is insufficient. The decision often depends on the recency 
and frequency of file accesses. Examples of cache eviction algo-
rithms include least recently used (LRU) (i.e., evicting the file 
that is the least recently accessed), least frequently used (LFU) 
(i.e., evicting the file that the lowest accessed frequency), and 
adaptive replacement cache (ARC) [51] (i.e., evicting a file deter-
mined jointly by its recency and frequency).

Our current CSAC implementation realizes cache-upon-access 
for cache admission, and LRU, LFU, and ARC for cache eviction.

Cache prefetching: CSAC supports cache prefetching to proactively 
tolerate stragglers. Based on the straggler list estimated as above, 
we can determine whether reading a file would hit a straggler, and 
hence prefetch the parity blocks of the file into the cache space. A 
question here is whether a file would be accessed in near future. 
Given the limited cache space, it is ineffective to simply cache all 
the files which have data blocks residing in straggler nodes.
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CSAC uses a file access prediction algorithm to decide which 
files should have their parity blocks prefetched into the cache 
space. The algorithm aims to predict how likely a file is to be 
accessed based on the historical access pattern. One example of 
the prediction algorithm is to leverage the file access recency pat-
tern, such that the more recently accessed file is more likely to 
be accessed soon. In this case, the prediction algorithm can re-
turn the list of files sorted by the latest access times of all files. 
The prediction algorithm is also configurable with other predic-
tion approaches, such as predicting the file popularity based on 
the number of concurrent accesses and the file size [14].

CSAC triggers cache prefetching when new stragglers are de-
tected. If a file is predicted to be accessed soon and has some 
blocks residing in the straggler nodes, CSAC prefetches its parity 
blocks into the cache space. To avoid prefetching too much data 
that leads to high I/O overhead, CSAC ensures that the amount of 
parity blocks prefetched each time is no more than a configurable 
ratio (denoted by θp ) of the total cache size. If there is insufficient 
space for caching parity blocks, CSAC evicts some cached parity 
blocks according to the eviction algorithm.

Algorithm details: CSAC caches parity blocks for the files that are 
admitted to cache or affected by existing stragglers. Specifically, 
CSAC caches the parity blocks for a file if there exists a node that 
stores the data blocks of the file and is recorded in the strag-
gler list (denoted by S). If no straggler node is detected (i.e., S is 
empty), CSAC decides whether to cache the parity blocks of a file 
based on the cache admission algorithm (denoted by Ga). It also 
chooses which parity blocks of a file to evict from cache based on 
the cache eviction algorithm (denoted by Ge). If prefetching is en-
abled, it predicts the files that are likely accessed soon via the file 
access prediction algorithm (denoted by G p ) and caches the parity 
blocks of the files affected by the stragglers.

Algorithm 1 elaborates the workflow of CSAC. It first initializes 
the total amount of cache space T and the available cache space 
A where A = T (in unit of blocks) (line 1). It also initializes the 
cache admission algorithm Ga , the cache eviction algorithm Ge , 
the file access prediction algorithm G p , and the prefetching ra-
tio θp (line 2). It manages the cache space according to the latest 
straggler list S , which is updated periodically (line 3). For every 
read request to a file f , CSAC calls a function Query, which deter-
mines if the file f should be cached. If the parity blocks of f have 
already been cached, the Query function returns cached (lines 5-
6). When f is not cached, CSAC returns shouldCache if (i) the 
cache admission algorithm Ga decides to cache f while the strag-
gler list is empty or (ii) the estimated stragglers store data blocks 
of f (lines 7-8); otherwise, it declines to bring f into cache by 
returning shouldNotCache (lines 9-11). Then another function
Update is called with the result of Query which is named deci-

sion. In the Update function, CSAC first updates the information 
on file f (e.g., access recency and frequency) (line 14). If decision

is shouldCache (i.e., the parity blocks of f should be cached but 
have not been cached before), CSAC evicts the files chosen by cache 
eviction policy until there is enough cache space (lines 15-23), 
caches the parity blocks of f (line 24). Note that Update returns 
the files to be evicted for caching the new parity blocks (line 26).

If cache prefetching is enabled and new straggler nodes are de-
tected, CSAC calls the Prefetch function to obtain a list of files for 
cache prefetching. When a file f is predicted to be read in near 
future (line 31), CSAC further checks if the data blocks of f are 
stored in any existing straggler node and f is not cached and if the 
amount of parity blocks to prefetch does not exceed the prefetch 
limit (i.e., T × θp); if so, CSAC includes f into the list of files for 
cache prefetching (lines 32-38). Finally, the Prefetch function re-
turns the list of files to be prefetched (line 40).

Remarks: Compared to SAC proposed in [75], CSAC generalizes 
the cache management with different admission/eviction policies 
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Algorithm 1 Configurable straggler-aware cache algorithm.
1: Initialize the total amount of cache space T and the amount of avail-

able cache space A = T
2: Initialize the cache admission algorithm Ga , the cache eviction algo-

rithm Ge , the file access prediction algorithm G p , and the prefetching 
ratio θp

3: Given the latest list of straggler nodes S
4: function Query( f )

5: if parity blocks of f are cached then
6: return cached
7: else if (S is empty AND Ga decides to cache f ) OR (some nodes 

in S store the data blocks of f ) then
8: return shouldCache
9: else

10: return shouldNotCache
11: end if
12: end function
13: function Update( f , decision)

14: Update the information on f
15: Initialize the set of files to be evicted, E = {}
16: if decision == shouldCache then
17: n f ← number of parity blocks to cache for f
18: while A < n f do
19: e ← file decided by Ge to be evicted
20: A ← A + number of parity blocks of e in cache
21: Add e to E
22: end while
23: A ← A − n f
24: Cache the parity blocks of f
25: end if
26: return E
27: end function
28: function Prefetch()

29: Initialize the set of files to be prefetched, P = {}
30: Set the amount of cache space for prefetching, N = 0
31: for file f predicted to read by G p do
32: if some nodes in S store data blocks of f AND file f is not 

cached then
33: n f ← number of parity blocks to cache for f
34: if N + n f ≤ T ∗ θp then
35: Add f to P
36: N ← N + n f
37: end if
38: end if
39: end for
40: return P
41: end function

and incorporates cache prefetching to tolerate stragglers proac-
tively. Actually, SAC is a special case of CSAC which uses cache-
upon-access as admission algorithm and LRU as eviction algorithm 
without prefetching. CSAC further reduces the straggler hit ratio by 
incorporating different eviction policies. And with prefetching en-
abled, CSAC reduces the 95th-percentile latency, especially under 
limited cache space. Our evaluation results in Section 5.3 demon-
strate the effectiveness of CSAC with different configurations under 
different cache sizes.

4. Implementation

We implement POCache on Hadoop 3.1 HDFS [3] and describe 
the implementation details as below.

4.1. Reads in HDFS

HDFS is a distributed file system that stores data across mul-
tiple servers in a fault-tolerant manner [61]. It comprises a single 
NameNode and multiple DataNodes. The NameNode is in charge of 
maintaining the system metadata and managing the file system 
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Fig. 6. Integration of POCache into HDFS.

namespace, while DataNodes are responsible for storing the file 
data in units of fixed-size blocks. To protect against data loss, the 
earlier versions of HDFS employ replication as the only redundancy 
mechanism and store multiple copies (i.e., replicas) for each block 
in different DataNodes. Since Hadoop 3, HDFS supports both repli-
cation and erasure coding as the redundancy techniques.

Hadoop 3.1 HDFS adopts different data layouts for replication 
and erasure coding. For replication, it adopts the contiguous layout, 
where each logical block is stored alone in each node; while for 
erasure coding, it employs the striping layout, where each logical 
file block is divided into smaller units called cells that are dis-
tributed across multiple DataNodes (Section 2.1). POCache works 
for both contiguous and striping layouts.

Since Hadoop 2.4, HDFS provides straggler tolerance via hedged 
reads (for replication-based storage only). Specifically, if a client 
issues a read request and receives no response after some time 
(called the waiting threshold), it issues another read request to a 
block replica stored in a different DataNode and uses the earli-
est response as the result. Thus, the performance of hedged reads 
is related to the waiting threshold, where a small threshold may 
falsely generate duplicate requests while a large threshold prolongs 
the latency.

4.2. Integration

Fig. 6 shows how POCache is implemented based on HDFS. We 
highlight the implementation details below.

Manager: Inside the NameNode, we add a module called the Man-
ager, which tracks the cached parity blocks, performs cache admis-
sion and eviction decisions according to the specified algorithms, 
and manages cache prefetching operations.

When the client writes a file to HDFS, the NameNode is first 
contacted and it asks the Manager whether to cache its parity 
blocks or not. As the newly written files are likely to be accessed 
again later [14], the Manager allows to cache their parity blocks if 
there remains enough cache space. Note that the NameNode does 
not know the file size until the ending of the write process. Thus, 
we prepare to reserve enough available space for a file to cache 
its parity blocks. The maximum number of parity blocks of a file 
depends on several parameters, including the largest file size that
POCache can cache for during writes, block size, and the num-
ber of data blocks per stripe (k), all of which are specified in the 
configuration.

When the client reads a file, the NameNode first identifies 
the block locations of the file. It then checks with the Manager 
whether there is any cached parity block for the file. If so, the 
locations of both data blocks and the parity blocks are returned 
to the client. We adopt proactive reads, in which the client issues 
reads to the k data blocks (i.e., the original file) and the cached 
parity blocks, such that the client can immediately decode the file 
once receiving any k blocks (either data or parity blocks). Proactive 
reads eliminate the impact of the waiting thresholds as in hedged 
reads, and do not need to know in advance which DataNodes are 
the stragglers. Since the redundancy overhead of erasure coding 
(i.e., m ) is limited and modern data centers now typically have 
k
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sufficient network bandwidth (e.g., 10 Gbps or even larger), the ad-
ditional network traffic due to the extra reads has limited impact 
on read performance.

The Manager manages the cache space according to the cache 
admission and eviction algorithms specified in CSAC (Section 3.3). 
For straggler estimation, the Manager maintains a separate thread 
to update the straggler list periodically. For every file request, the 
Manager calls the Query function to obtain the admission decision 
made by the cache admission algorithm. Also, the Manager calls 
the Update function based on the returned result of the Query

function to update file access information and obtain the eviction 
decision.

For cache prefetching, the Manager starts a separate thread to 
prefetch the parity blocks into the cache space. Specifically, when 
new straggler nodes are detected and cache prefetching is enabled, 
the Manager first calls the Prefetch function to obtain the list of 
files for caching. The separate thread then retrieves the data blocks 
from the files, generates the parity blocks, and adds the parity 
blocks into the cache space.

Client: We modify the HDFS client to augment its read/write oper-
ations to support POCache. Specifically, for writes, we modify the 
classes DFSOutputStream and DFSStripedOutputStream
to generate and cache parity blocks for any newly written files. For 
reads, we modify the classes DFSInputStream and DFSStri-
pedInputStream, such that the metadata of the cached parity 
blocks of the file being read is transferred to the client together 
with the block locations. The HDFS client implements both block 
slicing and incremental encoding, and interacts with the Manager 
on the caching operation (i.e., the client performs encoding and 
caches the parity blocks if the Manager admits a file into the 
cache). Note that we do not modify applications that run atop 
HDFS to ensure that our integration is transparent to the upper-
layer applications. That is, they can still issue normal reads/writes 
through the HDFS client interface.

DataNode: Each DataNode monitors a sendBlock function (i.e., 
the function that sends data from the storage node to the client) by 
recording the amount of data sent and elapsed time. Then, every 
DataNode reports its service rate to the Manager through periodi-
cal heartbeats for the maintenance of the straggler list.

Cache: We implement the cache as a key-value store using Redis 
[7]. We use the Java client interface, Jedis [6], to connect to the 
Redis cache. Note that the cache can be deployed alongside the 
DataNodes in the HDFS cluster. Our microbenchmarks (Section 5.2) 
show that the read performance of the Redis cache is faster and 
more stable than that of a DataNode.

5. Evaluation

We now show via evaluation that POCache effectively provides 
straggler tolerance for Hadoop 3.1 HDFS under both contiguous 
and striping layouts. Our evaluation aims to answer the following 
questions:

• What is the read performance of POCache with and without 
stragglers compared to other read mechanisms?

• What are the performance breakdowns of read/write operations 
in POCache? Can block slicing and incremental encoding effec-
tively mitigate the overhead of coding operations?

• Can the CSAC algorithm effectively manage the cache space?

We evaluate POCache on a local cluster (Sections 5.1-5.3) and 
Amazon EC2 (Section 5.4). The local cluster provides a controlled 
environment for us to configure the existence of stragglers, while 
Amazon EC2 enables us to evaluate the natural existence of strag-
glers in open environments. Compared with our conference ver-
sion [75], we add new evaluation results (i.e., Experiments 6, 10, 
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Fig. 7. Experiment 1 (Single-client reads under the contiguous layout).
and 13-15) and update Experiments 11-12, by evaluating the per-
formance of POCache on running MapReduce workloads and the 
caching efficiency of CSAC.

5.1. Read performance

We first evaluate the read performance of POCache with and 
without stragglers on a local cluster (Experiments 1-5). We then 
evaluate the performance of running MapReduce workloads in Ex-
periment 6.

Local cluster setup: Our local cluster consists of 15 machines, each 
of which is installed with Ubuntu 16.04 (with the Linux ext4 file 
system) and has a quad-core Intel Core i5-3570 3.40 GHz CPU, 
16 GiB RAM, and a Seagate ST1000DM003 7200RPM 1 TiB SATA 
disk. All machines are connected via a 10 Gbps Ethernet switch. 
The disk access (with a sequential read bandwidth of 156 MiB/s) is 
the bottleneck during file accesses. We use one dedicated machine 
for data caching by running Redis, and deploy Hadoop 3.1 HDFS 
on the remaining 14 machines. In the deployment of HDFS, we 
run the NameNode on one machine, and execute a variable num-
ber of DataNodes and HDFS clients on the remaining 13 machines 
(see details below).

We employ the benchmarking tool DFS-Perf [1] to gener-
ate write/read workloads (i.e., dfs-perf SimpleWrite/Sim-
pleRead) as configured (which is specified in each experiment), 
and collect the elapsed time results of all I/O requests (i.e.,
dfs-perf-collect SimpleWrite/SimpleRead). We run 
the Linux tool stress [8] (i.e., stress -i 1) on a DataNode, 
which issues sync commands to exhaust the local I/O resources, 
to inject a straggler on the local cluster.

By default, we set the block size and the subblock size as 
64 MiB and 1 MiB, respectively, and allocate the cache space to 
store 100 blocks (i.e., T = 100 in Algorithm 1). We disable cache 
prefetching and later specifically evaluate the effect of cache 
prefetching. We realize cache-upon-access for cache admission and 
LRU for cache eviction. We set k = 4, such that a file is composed 
of four data blocks. We focus on single-client performance, while 
we also evaluate multi-client performance.

Experiment 1 (Single-client reads under the contiguous layout):
We first consider the contiguous layout, in which one client issues 
a read request to a file of size equal to k blocks (k = 4, 6, 8, 10
respectively). We compare POCache with the following: (i) the de-
fault reads in HDFS (named Vanilla), (ii) hedged reads in HDFS 
(HR) (Section 4.1), and (iii) parallel reads (PR), in which a client 
issues reads to multiple data blocks in parallel without deploying
POCache.

For both Vanilla and PR, we deploy k DataNodes and store each 
of the k blocks in one DataNode. We disable replication, so any 
straggler DataNode is expected to slow down the file read. For 
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HR, we use k + 1 DataNodes and 2-way replication (i.e., two repli-
cas for each block), so that if one of the DataNodes becomes a 
straggler, HR can read the other replica from the remaining nor-
mal k DataNodes. Also, we set the waiting threshold of HR as zero 
(i.e., HR always issues duplicate requests to read a block), since our 
evaluation shows that in this setting HR can achieve the best per-
formance in the presence of stragglers. For POCache, we deploy k
DataNodes to store the k data blocks and cache one parity block 
in a separate cache node. We repeat each experiment for ten runs, 
and show the average result with the standard deviation repre-
sented by the error bars.

Figs. 7(a) and 7(b) depict the average single-client read laten-
cies without any straggler and with one straggler, respectively. 
Without any straggler, PR and POCache have the smallest read 
latency as they retrieve the blocks in parallel; HR has a higher la-
tency than Vanilla because HR introduces additional overhead by 
doubling all I/O requests. In the presence of a straggler, the read 
latencies of Vanilla and PR increase with high variance. POCache
reduces the average read latency by 81.7-85.2% and 40.4-77.5% 
compared to Vanilla and HR, respectively. This shows that straggler 
tolerance is attributed to parity-only caching rather than issuing 
parallel reads.

Experiment 2 (Single-client reads under the striping layout): We 
consider single-client reads under the striping layout. Note that HR 
is not supported under the striping layout, and Vanilla retrieves 
data blocks in parallel like PR. Thus, we consider Vanilla and
POCache only. We use the same deployment as in the contigu-
ous layout, and read a file of size equal to k blocks (k = 4, 6, 8, 10
respectively).

Figs. 8(a) and 8(b) depict the average single-client read laten-
cies without any straggler and with one straggler, respectively. 
When there is no straggler, Vanilla and POCache have similar read 
latencies, although POCache has a slightly higher latency for the 
same file size. The reason is that POCache reads one more parity 
block for each request than Vanilla and performs decoding opera-
tion if the first k received blocks include the parity block. However, 
when there is a straggler, the latencies of Vanilla increase to almost 
five times of those without straggler for all file sizes. POCache
keeps the latencies as in the case without any straggler, and re-
duces the latencies of Vanilla by 73.0-87.9%.

Experiment 3 (Impact of skewed workload): We study the la-
tency characteristics under skewed read workload, after evaluating 
single-file read performance in the previous experiments. We first 
generate a skewed workload as follows. We write 100 four-block 
files to HDFS and then issue 2,000 reads to the files following a 
Zipf distribution with a Zipfian constant of 0.9 (Zipf-0.9). Note that 
for the contiguous layout, we replace PR with selective replication 
(SR) in the comparison. SR not only inherits the read parallelism 
from PR, but also resists against stragglers by caching data blocks 
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Fig. 8. Experiment 2 (Single-client reads under the striping layout).

Fig. 9. Experiment 3 (Impact of skewed workload).

Fig. 10. Experiment 4 (Impact of multi-size workload).
of the popular files. Thus, comparing POCache with SR allows to 
evaluate whether caching parity blocks can achieve more perfor-
mance gains than caching data blocks.

Fig. 9 illustrates the read latencies under the contiguous and 
striping layouts. The mean latency here shows the average read 
time of the system (same for Experiments 4-5, 12, and 14-16). For 
the contiguous layout, by caching a number of popular blocks, SR 
has a lower median latency than HR. However, the tail latencies 
of SR sharply increase and are higher than those of HR, as some 
blocks in the straggler are not cached. POCache always achieves 
the lowest latency and it reduces the 95th-percentile latency by 
83.3% compared to Vanilla. For the striping layout, Vanilla is se-
riously affected by the straggler, where its 99th-percentile latency 
is about seven times of the median latency. In contrast, POCache
keeps stable latencies in the presence of stragglers.

Experiment 4 (Impact of multi-size workload): We evaluate the 
read performance of files of different sizes under the same read 
access pattern as in Experiment 3 (i.e., Zipf-0.9). We write 100 files 
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of different sizes into HDFS, in which there are 15 512-MiB files, 
30 256-MiB files, 17 128-MiB files, and 38 64-MiB files, by follow-
ing the characteristics of data stored in the Facebook cluster [58]. 
We set k = 4 and m = 1. For a file smaller than four blocks, we 
pad the file with zeros to a full stripe (i.e., four blocks), stripe it 
in either contiguous layout or striping layout, and generate a par-
ity block for caching. Fig. 10 depicts the read latencies. We observe 
that POCache can still achieve the lowest read latency. Compared 
to Vanilla, POCache reduces the read latency by 68.9-81.9% for the 
contiguous layout, and 50.8-76.8% for the striping layout, respec-
tively.

Experiment 5 (Impact of multi-client reads): We study the read 
performance with multiple clients. We deploy 4, 8, and 12 clients 
in the 15-machine cluster; note that some clients may be co-
located with a DataNode in the same machine. We first write 100 
four-block files into HDFS, and then generate a read workload with 
the same skewness (i.e., Zipf-0.9) for each client. In this experi-
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Fig. 11. Experiment 5 (Impact of multi-client reads): (i) 4 clients; (ii) 8 clients; and (iii) 12 clients.

Fig. 12. Experiment 6 (Performance of MapReduce workloads).
ment, we consider the average and 95th-percentile latencies as the 
latter reflects the tail latency.

Figs. 11(a) and 11(b) show the read latencies under the con-
tiguous and striping layouts, respectively. In general, the read la-
tencies of all mechanisms increase when more clients issue read 
requests. Compared to SR, POCache has a slightly larger mean 
latency, but a much lower 95th-percentile latency. Compared to 
Vanilla, POCache reduces the average read latency by 41.1-57.3% 
and 31.1-34.2%, and the 95th-percentile read latency by 32.6-55.4% 
and 31.7-41.8%, under contiguous and striping layouts, respectively.

Experiment 6 (Performance of MapReduce workloads): We evalu-
ate the performance of running MapReduce jobs with Vanilla and
POCache. We use HiBench [4] to run three MapReduce workloads 
(i.e., wordcount, sort, and terasort), with 128 256 MiB files as in-
put. We set the split size, the data unit of each mapper/reducer 
to process, as 256 MiB. For POCache, we set the cache space to 
200 (i.e., T = 200). To inject a straggler, we run stress (i.e.,
stress -i 32 -d 8 --hdd-bytes 16MiB) on a DataNode 
to limit the sequential read bandwidth (about 3.1 MiB/s), so as to 
degrade the performance of executing a map/reduce task. We plot 
the average execution time of each job over ten runs, including the 
error bars with the 95% confidence intervals. Fig. 12 shows the la-
tencies of POCache and Vanilla on executing MapReduce jobs in 
normal cases and with one straggler. In normal cases, POCache
achieves similar performance to Vanilla. When there is a straggler,
POCache reduces the latency of three workloads by 13.0-29.3%, 
because POCache bypasses the slowest node with cached parity 
blocks when reading input data from servers.

5.2. Microbenchmarks

We conduct microbenchmarks for read/write operations and 
MapReduce workloads.
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Table 2
Experiment 7 (Microbenchmarks on writes).

Subblock size Encoding Caching Overhead

0.25 MiB 0.05 ms 0.60 ms 14.11%
0.5 MiB 0.09 ms 1.00 ms 10.57%
1 MiB 0.20 ms 1.87 ms 8.18%
2 MiB 0.44 ms 3.28 ms 12.15%
4 MiB 0.96 ms 6.55 ms 16.37%
8 MiB 1.89 ms 12.94 ms 22.33%

Experiment 7 (Microbenchmarks on writes): We first study the ef-
ficiency of writing a data stream to the Redis cache through block 
slicing and incremental encoding. The data stream is composed 
of four 64-MiB blocks, each of which is further partitioned into a 
number of subblocks. We measure the time for the following two 
phases when the subblock size varies: (i) encoding, which refers to 
the encoding step at the client that produces a new intermediate 
parity subblock by incorporating the newly-arrived data subblock 
with the intermediate parity subblock that has been calculated in 
the last step, and (ii) caching, which refers to the procedure of 
transferring the generated parity subblocks from the HDFS client to 
the cache node. POCache performs encoding and caching in par-
allel, and the write latency denotes the elapsed time of encoding 
and caching the data stream. We ignore the preparation that cre-
ates the data blocks before encoding, as the preparation time is 
very little. We also calculate the overhead of introducing encoding 
and caching in the write path. Suppose that the write latencies of
POCache and Vanilla are l and l∗ respectively. Then the overhead 
is calculated as l−l∗

l∗ .
Table 2 shows the average results under different subblock 

sizes, indicating that POCache introduces no more than 23% of 
overhead in writes when compared to Vanilla. Also, POCache
achieves the lowest overhead (i.e., 8.18%) when the subblock is 1-
MiB.
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Table 3
Experiment 8 (Microbenchmarks on reads).

Mean Stdev

Normal DataNode 7.38 ms 9.22 ms
Straggler DataNode 51.61 ms 53.67 ms
Cache node 4.92 ms 2.16 ms

Fig. 13. Experiment 9 (Read latencies versus different subblock sizes).

Table 4
Experiment 10 (Microbenchmarks on MapReduce workloads).

Map Reduce Read

Vanilla 30.36 s 52.72 s 26.94 s
POCache 26.63 s 41.45 s 23.10 s

Experiment 8 (Microbenchmarks on reads): We investigate the ef-
ficiency of reading data from the cache. Table 3 shows the average 
latencies and their standard deviations of reading a 1-MiB subblock 
from a normal DataNode, a straggler, and the Redis cache, respec-
tively. The time of reading data from the straggler is more than 
seven times of that from the normal DataNode, which shows the 
necessity of mitigating stragglers in data reads. Reading data from 
the Redis cache takes the least time, justifying that caching can be 
effective to mitigate stragglers.

Experiment 9 (Read latencies under different subblock sizes): We 
verify the effectiveness of block slicing. We set the block size as 
64 MiB and vary the subblock size from 0.25 MiB to 64 MiB. We 
write a four-block file and read it for 200 times under each sub-
block size. Fig. 13 depicts the average read latencies under dif-
ferent subblock sizes. We can observe that the read latency is 
influenced by the subblock size, where the read latency increases 
if the subblock size is too small (e.g., 0.25 MiB) or too large (e.g., 
64 MiB). The lowest mean and tail latencies can be achieved when 
the subblock size is 1 MiB.

Experiment 10 (Microbenchmarks on MapReduce workloads): We 
study the breakdown performance of running wordcount job in the 
presence of stragglers. We use the same setting as in Experiment 6. 
Table 4 shows the mean latency of map tasks, reduce tasks, and 
reads at runtime. POCache achieves lower map/reduce latencies 
than Vanilla because POCache spends less time in reading the in-
put. The read latency here is longer than reading a four-block file 
directly because the read latency includes the processing time of a 
MapReduce task as it reads data from the input and feeds it into 
the Mapper/Reducer.

5.3. Caching efficiency

We compare CSAC with different cache algorithms. We write 
100 four-block files to HDFS and issue 2,000 read requests follow-
ing a Zipf distribution with a Zipfian constant of 0.9, to collect the 
straggler hit ratios and read latencies under different cache sizes 
(Experiments 11-15).
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Fig. 14. Experiment 11 (Straggler hit ratio under different cache sizes).

Experiment 11 (Straggler hit ratio under different cache sizes):
We first measure the straggler hit ratio of LRU, ARC, LFU, and CSAC 
under different cache sizes. Note that in the experiment, POCache
uses the four cache algorithms to manage the cached parity blocks, 
with a difference that CSAC is straggler-aware while the remaining 
three algorithms are not. Here, we set the admission policy of CSAC 
as cache-upon-access and the eviction policy as LRU, ARC, LFU re-
spectively, denoted by CSAC+LRU, CSAC+ARC, CSAC+LFU. We then 
vary the cache size from 0 to 100 (in unit of blocks).

Fig. 14 shows the straggler hit ratio under different cache sizes. 
The straggler hit ratios generally decrease when the cache size be-
comes larger and CSAC achieves the smallest straggler hit ratio 
among all the four cache algorithms. As a straggler-aware cache 
algorithm, CSAC is more effective in reducing the straggler hit ra-
tio when the cache size is small. For example, when the cache size 
is 40, CSAC reduces the straggler hit ratio below 2.5%, while other 
three cache algorithms still incur around 10% of straggler hit ra-
tios. When the cache size is 100, the Redis cache is large enough 
to keep all parity blocks associated with the data blocks that have 
been accessed, therefore the straggler hit ratios of all the cache 
algorithms reach zero.

Recall that CSAC with LRU is equivalent to SAC proposed in our 
earlier conference version [75] (Section 3.3). Although the strag-
gler hit ratio of CSAC+LRU is lower than that of the cache algo-
rithms without straggler awareness (i.e., LRU, ARC, and LFU), it is 
higher than those of CSAC+LFU and CSAC+ARC (both of which have 
very similar results). For example, when the cache size is 10, the 
straggler hit ratio of CSAC+LRU (19.5%) almost doubles those of 
CSAC+LFU (10.8%) and CSAC+ARC (11.5%). Only when the cache size 
is larger than 60, all three configurations for CSAC achieve similar 
straggler hit ratios. This shows the significance of allowing config-
urability in CSAC, as it can support different cache management 
algorithms to mitigate the straggler hit ratio.

Experiment 12 (Read latencies under different cache sizes): We 
study the latencies of LRU, ARC, LFU, and CSAC under different 
cache sizes. We vary the cache size from 40 to 80, and measure 
the mean and the 95th-percentile latencies of different cache algo-
rithms. Fig. 15 presents the read latencies under different cache 
sizes. We see that the read latencies decrease with the cache 
size. CSAC achieves the lowest latencies as it mitigates the strag-
gler hit ratio. When the cache size is 40 (i.e., 10% of the number 
of data blocks written), CSAC+LRU, CSAC+ARC, and CSAC+LFU re-
duce the 95th-percentile latency by 72.1-75.8%, 84.2-86.3%, and 
83.5-85.7% compared to other cache algorithms without straggler 
awareness, respectively. When the cache size is 80, all cache algo-
rithms achieve low read latencies because 80% of files have parity 
blocks in cache.

Experiment 13 (Impact of different cache strategies): To evalu-
ate the efficacy of caching parity and data, we compare POCache 
(CSAC+LFU) with caching data of a file according to different cache 
management algorithms: (i) SR, which only considers access pat-
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Fig. 15. Experiment 12 (Read latencies under different cache sizes): (i) cache size = 
40; (ii) cache size = 60; (iii) cache size = 80.

Fig. 16. Experiment 13 (Impact of different cache strategies) Straggler hit ratio under 
different cache sizes.

Fig. 17. Experiment 14 (Read latencies of different cache strategies): (i) cache size = 
40; (ii) cache size = 60; (iii) cache size = 80.

tern using LFU algorithm (as LFU achieves the lowest straggler hit 
ratio among LRU and ARC); (ii) DC1, which only caches the data 
block on the estimated straggler node; and (iii) DC2, which man-
ages the data caching with CSAC+LFU, i.e., considering both access 
pattern and straggler estimation. Fig. 16 shows the straggler hit ra-
tio of different cache strategies under different cache sizes. SR has 
the highest straggler hit ratio across different cache sizes because 
it only considers the file access pattern. DC1 achieves a slightly 
lower straggler hit ratio than DC2 as it specifically caches the data 
blocks on the straggler node, but has a little higher straggler hit 
ratio than POCache. POCache achieves the lowest straggler hit ra-
tio because caching parity blocks tolerates the straggler even when 
the estimation is inaccurate.

Experiment 14 (Read latencies of different cache strategies):
Fig. 17 shows the read latencies of different cache strategies under 
different cache sizes. We compare POCache with the data cache 
strategies used in Experiment 13 (i.e., SR, DC1, DC2) and OR, which 
only reads from the healthy node under three-way replication. SR 
has the longest read latencies because it has the highest strag-
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Fig. 18. Experiment 15 (Read latencies with cache prefetching).

gler hit ratio. OR, DC1, and DC2 achieve similar performance by 
only requesting data blocks from healthy nodes or caching specific 
data blocks, which shows their efficacy in mitigating the impact of 
straggler nodes. POCache achieves the lowest read latencies as the 
cached parity can always tolerate the slowest node during reads.

Experiment 15 (Read latencies with cache prefetching): We now 
enable cache prefetching in CSAC and study its efficacy. Here, the 
file access prediction uses the file access recency to decide the list 
of files for cache prefetching. We use LFU as the eviction policy of 
CSAC (i.e., CSAC+LFU), which outperforms CSAC+LRU and achieves 
similar results to that of CSAC+ARC. We set the prefetching ratio 
θp as 40%. Fig. 18 depicts the read latencies of LRU, ARC, LFU, CSAC 
when the cache size is 20. When cache prefetching is enabled, 
CSAC reduces the 95th-percentile read latency by 48.8% compared 
to without cache prefetching. Note that cache prefetching incurs a 
slightly higher 99th-percentile latency since the cache prefetching 
process needs to retrieve data blocks for parity block generation, 
thereby incurring extra I/O overhead.

Summary: Our proposed CSAC achieves the smallest straggler hit 
ratios and the lowest read latencies among all the measured cache 
algorithms. For example, when the cache size is 40, CSAC reduces 
the straggler hit ratio below 2.5% and reduces the 95th-percentile 
latency by up to 85.7%. When cache prefetching is enabled, CSAC 
can further reduce the read latencies; for example, it reduces the 
95th-percentile read latency by 48.8% when the cache size is 20.

5.4. Amazon EC2 experiments

Experiment 16 (Read performance on Amazon EC2): We evaluate 
the performance of POCache on a Amazon EC2 cluster. We deploy 
Hadoop atop 30 m5.large instances, where we use 28 instances 
as DataNodes and let the remaining two instances be the client 
and the NameNode, respectively. We also start one m5.2xlarge
instance to serve as the cache node by running Redis. The under-
lying hardwares of these machines are shared by multiple tenants. 
The network bandwidth is around 5 Gbps and all machines are 
equipped with magnetic storage. We set k = 4 and m = 1, and 
write 300 four-block files (i.e., 1,200 data blocks in total) into 
HDFS. We then generate 1,000 read requests by following the Zipf 
distribution with a Zipfian constant of 0.9. We set the cache size as 
120 (in unit of blocks), which is 10% of the number of data blocks 
stored in HDFS.

Fig. 19 shows the read latencies under the contiguous and strip-
ing layouts. We make two observations. First, stragglers naturally 
appear in the cloud environment, as the I/O and computational re-
sources are shared and competed among different cloud users. For 
example, the 99th-percentile latency of Vanilla is 68.3% larger than 
its median latency. Second, POCache tolerates stragglers robustly 
by caching parity blocks even though the straggler estimation is 
inaccurate in such an environment where the stragglers fluctuate.
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Fig. 19. Experiment 16 (Read performance on Amazon EC2).
POCache achieves the lowest latency among all the four policies. 
Specifically, POCache reduces the mean and 95th-percentile laten-
cies of Vanilla by 64.3% and 63.9% under the contiguous layout, 
and by 30.9% and 42.4% under the striping layout.

6. Related work

Straggler tolerance: A large body of studies have addressed the 
straggler problem in different aspects, especially data-parallel pro-
cessing frameworks [16,63,69,72]. We review these studies because 
the scenario they target is similar to ours where reading a file re-
quires to retrieve all of its blocks. LATE [72] handles the straggler 
by estimating the remaining time of each task and executing spec-
ulatively those which would degrade the job. Mantri [16] monitors 
the MapReduce jobs and culls the slow tasks given the causes 
identified. Dolly [15] clones the small jobs in order to skip the 
waiting phase in the speculative execution. Wrangler [69] moni-
tors the resource utilization of the cluster and schedules the tasks 
carefully to avoid the potential stragglers. PBSE [63] is a path-
based speculative execution to tolerate the network throughput 
degradation. IASO [55] detects stragglers based on timeout signals 
and isolates them to mitigate their impact. Some recent studies 
[17,60] mitigate the impact of straggler tasks with coding to re-
duce the job completion time in distributed computing systems. 
In the context of storage, POCache tolerates stragglers with ad-
ditional redundancy. Some studies [11,41,65] present theoretical 
analysis of redundancy for straggler mitigation, while our analysis 
mainly studies the straggler hit ratios of different caching mecha-
nisms.

Erasure coding: Recent studies explore the use of erasure coding 
to improve read performance. Cocytus [73] and MemEC [70] store 
entire erasure-coded stripes in memory for low-latency access. 
EC-Cache [58] addresses load imbalance by splitting and encod-
ing individual objects into stripes that are stored in the memory 
entirely. In contrast, POCache only caches parity blocks to toler-
ate the presence of stragglers. Specifically, POCache caches only 
one parity block for each file, which is shown to be effective in 
straggler tolerance based on our analysis. Some studies address 
stragglers in erasure-coded storage systems, in which all data is 
persistently stored in erasure-coded form. Hu et al. [36] propose 
proactive degraded reads to reduce the tail latency due to de-
graded reads (which trigger more I/Os than normal reads). Li et 
al. [48] perform erasure coding across sectors on hard disks, so 
that local file systems can recover from transient sector-read fail-
ures without triggering read retries. EC-Store [9] avoids retriev-
ing chunks from the heavy-loaded servers by placing and moving 
chunks dynamically in erasure-coded storage systems. Agar [33]
caches the fragments in the remote site for geo-distributed store 
with erasure coding to minimize the read latency. TTLCache [12]
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is a novel caching policy for jointly optimizing mean and tail la-
tency in erasure-coded storage. Liu et al. [50] propose an offline 
caching scheme according to future data popularity and network 
latency information to achieve low latency in distributed coded 
storage systems. The closest related work to ours is Sprout [10], 
which shows that caching erasure-coded data can reduce access 
latency. The main differences between Sprout and our work in-
clude: (i) We show via mathematical analysis that caching only 
one parity block is effective to mitigate the impact of stragglers, 
and thus POCache only caches one parity block instead of multi-
ple parity blocks in Sprout; (ii) POCache proposes the straggler hit 
ratio to measure the probability of hitting stragglers, and a config-
urable straggler-aware cache algorithm to manage the cache space 
to reduce the straggler hit ratio, while Sprout is not specifically de-
signed to bypass stragglers; (iii) Sprout keeps erasure-coded data 
either on the client side or in a proxy-based caching tier, while our 
caching tier can be deployed alongside the storage nodes (Fig. 2); 
(iv) Sprout does not address how to mitigate the non-negligible 
encoding/decoding overhead for large files as in our work; and (v) 
Sprout targets erasure-coded storage (like [36,48]), while our work 
can be applied to any form of storage (either replicated or erasure-
coded). Note that the latter three differences are mainly related to 
the implementation.

Caching: To enable low-latency storage services, modern stor-
age systems deploy in-memory caches (e.g., Memcached [30,53], 
Redis [7], ElastiCache [2]) to buffer frequently accessed objects. 
Recent studies [18,25,28,29,49] further improve the internal per-
formance or hit ratios of in-memory caches. Alluxio (formerly 
called Tachyon) [45] provides in-memory fault tolerance via lin-
eage for data-intensive applications. NetCache [40] realizes caching 
in programmable network switches. RobinHood [19] proposes tail-
latency-aware caching, which identifies the cache-poor backends 
and shifts cache space from other backends to the cache-poor 
backends. POCache targets straggler tolerance with emphasis on 
robustness and space efficiency.

7. Conclusion

We present POCache, a robust approach of caching parity 
blocks with a dedicated cache algorithm to mitigate the perfor-
mance degradations due to stragglers. We first analyze the effec-
tiveness of parity-only caching, which achieves a low probability 
of hitting stragglers with limited cache space. To apply it in real-
world storage systems, we propose block slicing and incremental 
encoding to reduce the encoding and decoding penalties. We fur-
ther design a configurable straggler-aware cache algorithm (CSAC) 
that takes into account the file popularity and straggler appear-
ance when managing the cache space. CSAC allows users to con-
figure different cache management algorithms and support cache 
prefetching. Our evaluation results on both local and Amazon EC2 
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clusters demonstrate the effectiveness of POCache in achieving ro-
bust straggler tolerance. Our future work is to enable data updates, 
appends, and partial file writes in POCache. To support these func-
tions, we need to update the cached parity blocks efficiently and 
make the cached parity blocks consistent with the data blocks be-
longing to the same stripe.
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