
Journal of Parallel and Distributed Computing 167 (2022) 157–172

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

POCache: Toward robust and configurable straggler tolerance with

parity-only caching ✩

Mi Zhang a, Qiuping Wang a, Zhirong Shen b, Patrick P.C. Lee a,∗
a The Chinese University of Hong Kong, Hong Kong, China
b Xiamen University, Xiamen, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 August 2021
Received in revised form 10 February 2022
Accepted 9 May 2022
Available online 16 May 2022

Keywords:
Stragglers
Erasure coding
Caching

Stragglers (i.e., nodes with slow performance) are prevalent and incur performance instability in large-
scale storage systems, yet it is challenging to detect stragglers in practice. We make a case by
showing how erasure-coded caching provides robust straggler tolerance without relying on timely and
accurate straggler detection, while incurring limited redundancy overhead in caching. We first analytically
motivate that caching only parity blocks can achieve effective straggler tolerance. To this end, we present
POCache, a parity-only caching design that provides robust straggler tolerance. To limit the erasure
coding overhead, POCache slices blocks into smaller subblocks and parallelizes the coding operations
at the subblock level. It further adopts a configurable straggler-aware cache algorithm (CSAC) that takes
into account both file access popularity and straggler estimation to decide which parity blocks should
be cached. CSAC enables POCache to configure various cache admission and eviction algorithms with
straggler awareness and supports cache prefetching. We implement a POCache prototype atop Hadoop
3.1 HDFS, while preserving the performance and functionalities of normal HDFS operations. Extensive
experiments on both local and Amazon EC2 clusters show that in the presence of stragglers, POCache
can reduce the read latency by up to 87.9% compared to vanilla HDFS.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Large-scale storage systems are susceptible to high performance
variability or long tails for various reasons [26], such as hardware
slowdown [32,34], load imbalance [58], resource sharing [68], and
workload skewness [22,76]. Such performance variability and long
tails are often caused by the presence of stragglers (also known as
“gray failures” [38] or “fail-slow faults” [32]), which refer to the
nodes that remain operational but with slow performance. Strag-
glers are problematic, as they easily introduce performance insta-
bility that degrades user experience.

Unfortunately, detecting and pinpointing stragglers is non-
trivial and may take hours or even months, due to the com-
plexity of root cause analysis and limited knowledge about the
full hardware stack [32]. Some systems address straggler tolerance

✩ A preliminary version [75] of this paper was presented at the 35th International
Conference on Massive Storage Systems and Technology (MSST 2019). In this ex-
tended version, we analyze the effect of straggler tolerance with different caching
schemes in the face of correlated failures, propose a configurable straggler-aware
algorithm for POCache and include additional evaluation results.

* Corresponding author.
E-mail addresses: mzhang@cse.cuhk.edu.hk (M. Zhang), qpwang@cse.cuhk.edu.hk

(Q. Wang), shenzr@xmu.edu.cn (Z. Shen), pclee@cse.cuhk.edu.hk (P.P.C. Lee).
https://doi.org/10.1016/j.jpdc.2022.05.004
0743-7315/© 2022 Elsevier Inc. All rights reserved.
via selective replication, which caches replicas for popular objects
[14,24,35,64] to avoid accessing stragglers (i.e., hotspots with over-
loaded requests) under skewed workloads. However, the popularity
of objects can sharply change in a short period of time [39],
and caching all objects is infeasible due to the high redundancy
overhead of replication. Thus, selective replication is arguably inef-
fective when the available cache space is limited [39,58].

This motivates us to study how to provide robust straggler tol-
erance for distributed storage systems in practice; by robust, we
mean that our straggler tolerance design does not rely on ac-
curate detection of stragglers. We explore erasure-coded caching,
which caches the erasure-coded blocks with limited redundancy
penalty. Erasure coding has been widely studied in the literature to
provide fault tolerance for distributed storage systems against fail-
stop failures [31,37] and fail-slow failures [42,43]. Here, we explore
how erasure coding, coupled with caching, tolerates stragglers that
cause performance variability and long tails in a real-world dis-
tributed storage system.

Although previous studies have also explored erasure-coded
caching (e.g., [9,10,33,58]), there remain several challenges to make
erasure-coded caching feasible in practical distributed storage sys-
tems. First, the encoding and decoding operations of erasure cod-
ing add non-negligible latency to the I/O requests that access the

https://doi.org/10.1016/j.jpdc.2022.05.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.05.004&domain=pdf
mailto:mzhang@cse.cuhk.edu.hk
mailto:qpwang@cse.cuhk.edu.hk
mailto:shenzr@xmu.edu.cn
mailto:pclee@cse.cuhk.edu.hk
https://doi.org/10.1016/j.jpdc.2022.05.004

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172
in-memory cache (e.g., 30% in EC-Cache [58]), thereby degrading
the normal I/O performance without coding operations. Second,
designing an appropriate cache algorithm specifically for erasure-
coded caching remains non-trivial. In particular, we need to ad-
dress the issue of which erasure-coded data should be cached
based on the file access popularity in the presence of stragglers.
Finally, we should properly integrate erasure-coded caching into
existing distributed storage systems, without changing the func-
tionalities of normal operations.

In this paper, we propose POCache, a parity-only caching
scheme that achieves robust straggler tolerance without relying
on accurate straggler prediction. The main idea of POCache is to
cache only parity blocks (i.e., the redundant blocks encoded from
file data), which we show can effectively tolerate stragglers with
limited caching and bandwidth overhead. POCache targets on the
write-once-read-many workloads, in which files cannot be modified
once being written. We summarize our contributions as follows.

• We show via mathematical analysis that caching only parity
blocks provides more effective straggler tolerance than caching
only data blocks (as in selective replication). In particular,
caching only one parity block effectively mitigates the impact
of stragglers. Our analysis provides several insights that guide
our POCache design.

• We design POCache, a parity-only caching scheme that provides
robust straggler tolerance. POCache mitigates erasure coding
overhead via two mechanisms, namely block slicing and incre-
mental encoding, in which we partition blocks into smaller sub-
blocks and parallelize coding operations at the subblock level.
POCache caches parity subblocks rather than the whole parity
blocks.

• We design a configurable straggler-aware cache algorithm (CSAC)
that decides which parity blocks should be cached by taking
into account both file access popularity and straggler estima-
tion. Compared to the straggler-aware cache algorithm in our
conference version [75], CSAC is configurable, such that it can
incorporate different cache replacement policies with straggler
awareness. It takes a best-effort approach to cache the par-
ity blocks of popularly accessed files based on the estimation
of which nodes are likely to be stragglers. CSAC also enables
POCache to prefetch the parity blocks of the files that are af-
fected by the estimated stragglers into the cache space. Note
that our straggler estimation may be inaccurate (i.e., stragglers
are falsely detected), yet POCache still provides robust straggler
tolerance through parity-only caching.

• We implement a POCache prototype atop Hadoop 3.1 HDFS [3].
We show that our implementation preserves the original I/O
workflows, storage layouts, and fault tolerance of HDFS.

• We evaluate POCache on both local and Amazon EC2 clusters.
We show that compared to reads in vanilla HDFS, POCache can
reduce the read latency by up to 87.9% in the presence of strag-
glers, and suppress the read latency in the presence of stragglers
to almost identical to that in the normal case where no strag-
gler exists. We also conduct various experiments to justify the
robustness of straggler tolerance of POCache.

Compared to the work in [75], we make the following new con-
tributions. We first analyze the effect of different caching schemes
in the presence of correlated stragglers, by quantifying the ra-
tio of read requests that hit stragglers. Second, we propose and
implement a configurable straggler-aware cache algorithm (CSAC),
which supports various cache admission and eviction algorithms
and cache prefetching. Furthermore, we evaluate the performance
of POCache on running MapReduce workloads and the caching ef-
ficiency of CSAC.
158
Fig. 1. Contiguous and striping layouts (only data blocks are shown here).

The source code of our prototype POCache is available at:
http://adslab .cse .cuhk.edu .hk /software /pocache.

The rest of the paper proceeds as follows. Section 2 intro-
duces the background details of erasure coding, and motivates that
parity-only caching can reduce the probability of hitting stragglers.
Section 3 presents the design of POCache. Section 4 describes
the implementation details of POCache on Hadoop 3.1 HDFS. Sec-
tion 5 shows our evaluation results on both local and Amazon EC2
clusters. Section 6 reviews related work, and finally Section 7 con-
cludes the paper.

2. Background and motivation

In this section, we analyze the effect of straggler tolerance by
caching only parity blocks. We then pose the challenges of apply-
ing parity-only caching to distributed storage systems with differ-
ent data layouts.

2.1. Basics

Erasure coding: Erasure coding provably incurs much less redun-
dancy than replication under the same degree of fault tolerance
[66]. At a high level, an erasure code is usually configured by two
parameters namely n and k, where n > k. An (n, k) erasure code
encodes, via Galois Field arithmetic [56], k fixed-size uncoded data
blocks to generate another m = n − k coded parity blocks of the
same size, such that the collection of the n data and parity blocks
forms a stripe. An erasure code is said to satisfy the Maximum Dis-
tance Separable (MDS) property if any k blocks in a stripe suffice
to reconstruct (or decode) the original k data blocks. A storage
system typically stores multiple stripes, each of which is inde-
pendently encoded. A well-known family of MDS erasure codes is
Reed-Solomon (RS) codes [59], which are extensively employed in
current commodity storage systems (e.g., Ceph [67], QFS [54], and
HDFS [3]). Many repair-efficient techniques (e.g., [46,47,52]) have
recently been proposed to speed up repair operations in erasure
coding. In this paper, we explore how to couple erasure coding
with caching to provide straggler tolerance.

Data layouts: Distributed storage systems divide files into logi-
cal blocks and store them across multiple nodes by following ei-
ther the contiguous layout or the striping layout. For the contiguous
layout, the storage system stores sequential logical blocks across
nodes (one block per node). This design significantly reduces disk
seeks, but limits the parallel access. For the striping layout, the
storage system decomposes a logical block into smaller units and
stores them across nodes. Fig. 1 depicts an example of both con-
tiguous and striping layouts, where a file is partitioned into three
logical blocks of size 2 MiB each. In this example, the contiguous
layout places one logical block in a node, while the striping layout
breaks a logical block into two smaller units (i.e., 1 MiB per unit)
and stores the resulting six units across three nodes. Thus, read-
ing a file in the contiguous layout can be done by retrieving the

http://adslab.cse.cuhk.edu.hk/software/pocache

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172
Fig. 2. Example of reading a file with caching in Section 2.2.

logical blocks one by one, while in the striping layout it needs to
assemble the smaller units into the original file. Both layouts are
supported in current storage systems (e.g., HDFS of Hadoop ver-
sion 3 [3]).

Stragglers: When reading a file, any straggler that stores the blocks
of a file would increase the read latency, regardless of which data
layout the distributed storage system adopts. For the contiguous
layout, the penalty incurred by the stragglers is added to the over-
all read latency as the blocks are retrieved sequentially. For the
striping layout, the latency of reading a file is equal to the time of
reading from the slowest node.

2.2. Analysis

We show via a toy example how erasure coding addresses
straggler tolerance. We first review the procedure of reading a
file without considering access skewness. Suppose that the k data
blocks of a file are distributed in k storage nodes (Fig. 2). A client
should retrieve all the k data blocks when reading the file, and
the read time increases if any of the k storage nodes becomes
a straggler. To tolerate stragglers without altering the underlying
data layout and fault tolerance, we can introduce a small group of
nodes and let them cache some redundant data. Suppose that we
introduce c cache nodes (where c ≤ k) to cache c blocks (with one
block per cache node). To read the file, the client can issue k + c
read requests to the k storage nodes and c cache nodes, and recon-
struct the file once all its k data blocks are successfully received.
Since the client has more choices to read the file, caching addi-
tional blocks can tolerate stragglers caused by either independent
failures or correlated failures.

2.2.1. Independent stragglers only
Let ps and pc be the probabilities that a storage node and

a cache node become stragglers, respectively. We consider two
caching schemes: data-only caching and parity-only caching. Let P
be the probability of hitting at least one straggler when reading a
file. We calculate P under both caching schemes as follows.

• Data-only caching: Data-only caching caches the replicas of a
subset of data blocks in the cache nodes. Since we cannot tell
certainly which nodes would become stragglers, we randomly
select c out of k data blocks and cache them in the c cache
nodes. Thus, in data-only caching, there are c blocks that have
a replica stored in a cache node (in addition to the block copy
in a storage node), and another k − c blocks that have only a
block copy stored in a storage node without being cached. Data-
only caching can provide straggler tolerance as long as all the
blocks residing in a straggler are cached. We compute P under
data-only caching as:
159
P = 1 −
c∑

i=0

(
c

i

)
· ps

i · (1 − ps)
k−i

︸ ︷︷ ︸
i storage nodes are stragglers

· (1 − pc)
i︸ ︷︷ ︸

i cache nodes are normal

.

Note that selective replication also caches data blocks. In partic-
ular, it selects the data blocks that are most likely to reside in
stragglers to cache. In our toy example, the probability that each
storage node becomes a straggler is identical, so selective repli-
cation is actually identical to data-only caching that we consider
here.

• Parity-only caching: Parity-only caching caches c parity blocks in
the cache nodes, which are generated from k data blocks via
an (n, k) MDS code (i.e., n = k + c). As any k out of the k + c
data and parity blocks can reconstruct the original file (i.e., the
MDS property), we can retrieve any k blocks from the k storage
nodes and c cache nodes. The probability P under parity-only
caching is now equal to the probability that more than c blocks
are stored in the straggler nodes, i.e.,

P =1 −
c∑

i=0

i∑
j=0

(
k

j

)
· ps

j · (1 − ps)
k− j

︸ ︷︷ ︸
j storage nodes are stragglers

·

(
c

i − j

)
· pc

i− j · (1 − pc)
c−i+ j

︸ ︷︷ ︸
(i − j) cache nodes are stragglers

.

Fig. 3 depicts P under no-caching (i.e., c = 0), data-only
caching, and parity-only caching for different combinations of k,
c, ps and pc . Fig. 3(a) plots the probability versus k with c = 1,
ps = 0.005, and pc = 0.005. P increases linearly with k under
no-caching and data-only caching, while parity-only caching re-
mains to have a small value of P as k increases. Fig. 3(b) plots
P versus c with k = 4, ps = 0.005, and pc = 0.005. For parity-only
caching, caching one parity block already keeps P very low (2.48E-
4), and further increasing c only reduces P slightly. Fig. 3(c) plots
P versus ps with k = 4, c = 1, and pc = 0.005. Parity-only caching
with c = 1 can still keep P very low even when ps increases to
0.01, while P under data-only caching increases linearly with ps .
Fig. 3(d) plots P versus pc with k = 4, c = 1, and ps = 0.005. It
shows that pc has a negligible effect on the probability of hitting
stragglers. For data-only caching and parity-only caching, P with
pc = 0.01 remains almost the same as that when each cache node
would never be a straggler (i.e., pc = 0).

2.2.2. Correlated stragglers
Modern data centers group nodes into racks, where the nodes

in the same rack are connected by a top-of-rack (ToR) switch and
different racks are interconnected by a network core [13]. In such a
hierarchical data center, the blocks of a file are distributed across
different nodes in distinct racks (aka. flat placement) [31,37], or
fewer racks where each rack stores more than one block (aka. hi-
erarchical placement) [74]. Thus, reading a file needs to access data
from different number of racks under different block placement
policies.

Correlated failures make all nodes in a rack become straggler
nodes, introducing correlated stragglers. We denote the probability
of rack slowdown and the number of blocks stored in each rack by
pr and a respectively. Here, we assume both the number of data
blocks k and the blocks in cache c are multiples of a for simplicity.
Thus, k data blocks are distributed across r = k

a racks. To maximize
the rack-level straggler tolerance, the blocks in cache are stored in
different racks from the racks where data blocks are stored. We
calculate P under both data-only caching and parity-only caching

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172

Fig. 3. Probability P that a read hits a straggler for different combinations of k, c, ps , and pc under no-caching (NC), data-only caching (DoC), and parity-only caching (PoC).
Here, we consider independent stragglers only.
in the presence of independent and correlated stragglers as fol-
lows.

• Data-only caching: As we explained previously, data-only caching
can only tolerate the straggler nodes which have an exact replica
in cache. The same applies to the straggler tolerance caused by
rack slowdown. That is, data-only caching can provide straggler
tolerance when the blocks residing in the slow racks have the
cached replicas. Thus, the probability P under data-only caching
in the best cases (i.e., tolerating the maximum number of rack
failures) is:

P =1 −
c
a∑

i=0

c−ia∑
j=0

(c
a

i

)
· pr

i · (1 − pr)
r−i

︸ ︷︷ ︸
storage nodes in i slow racks are stragglers

·

(
c − ia

j

)
· ps

j · (1 − ps)
k−ia− j

︸ ︷︷ ︸
j storage nodes in normal racks are stragglers

·

(1 − pr)
� ia+ j

a � · (1 − pc)
ia+ j︸ ︷︷ ︸

(ia + j) cache nodes are normal

.

• Parity-only caching: With c parity blocks in cache, parity-only
caching tolerates up to c blocks residing in straggler nodes or
racks. Therefore, the probability P under parity-only caching in
the best cases equals to:

P =1 −
c
a∑

i=0

c−ia∑
j=0

c−ia− j∑
l=0

� l
a �∑

v=0

(
r

i

)
· pr

i · (1 − pr)
r−i

︸ ︷︷ ︸
·

storage nodes in i slow racks are stragglers

160
(
k − ia

j

)
· ps

j · (1 − ps)
k−ia− j

︸ ︷︷ ︸
j storage nodes in normal racks are stragglers

·

pr
v(1 − pr)

(c
a −v)︸ ︷︷ ︸

cache nodes in v slow racks are stragglers

·

(
c − va

l − va

)
· pc

l−va · (1 − pc)
c−l

︸ ︷︷ ︸
(l − va) cache nodes in normal racks are stragglers

.

Fig. 4 shows the probability P of no-caching, data-only caching,
and parity-only caching under flat and hierarchical block place-
ment respectively, in the face of independent and correlated strag-
glers. Fig. 4 (a) depicts the probability P versus k with a = 1, c = 1,
pr = 0.001, ps = 0.005, and pc = 0.005. Here, k data blocks are dis-
tributed across k racks. The probability is higher than that without
rack slowdown in Fig. 3 (a). Parity-only caching still achieves a
small probability P (1.91E-3) as k increases. Fig. 4 (b) shows the
probability P under hierarchical placement where a = 2. The prob-
ability of no-caching here is slightly lower than that under flat
placement because the blocks are distributed across less racks. We
cache two blocks to tolerate one rack slowdown, i.e., c = 2. Parity-
only caching achieves a probability of 3.33E-4 or lower while data-
only caching has a probability of up to 4.32E-2 when k is less than
or equal to 10. From the above analysis, parity-only caching pro-
vides robust straggler tolerance against independent and correlated
failures.

2.3. Challenges

While the above analysis demonstrates the effectiveness of
parity-only caching in straggler mitigation, three challenges still re-
main when we apply parity-only caching to real-world distributed
storage systems.

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172

Fig. 4. Probability P that a read hits a straggler for different block placement policies under no-caching (NC), data-only caching (DoC), and parity-only caching (PoC) where
the cached blocks can tolerate one rack slowdown (i.e., c = a). Here, we consider both independent and correlated stragglers (ps = 0.005, pc = 0.005, pr = 0.001).
Table 1
Latencies versus block size for RS codes under (n, k) = (5, 4).

Block size Network
transfer

Memory
access

Encoding/
decoding

16 MiB 51.2 ms 9.7 ms 7.4 ms
32 MiB 102.4 ms 19.2 ms 14.8 ms
64 MiB 204.8 ms 38.4 ms 29.7 ms
128 MiB 409.6 ms 76.6 ms 56.3 ms

Note that the time of network transfer is calculated as transferring four blocks
through 10 Gbps network.

First, applying erasure coding to large-size blocks easily in-
curs non-negligible decoding (resp. encoding) overhead to the read
(resp. write) path, thereby increasing the read (resp. write) la-
tency. To demonstrate it, we measure the latencies of encoding
and decoding operations of the erasure coding library ISA-L [5]
using the RawErasureCoderBenchmark tool in Hadoop 3.1. Ta-
ble 1 shows the latencies of network transfer, memory access,
encoding, and decoding versus different block sizes for RS codes
under (n, k) = (5, 4). The memory access as well as the encod-
ing and decoding operations have comparable latencies, where the
total latency in memory access and encoding/decoding accounts
for approximately 33% of the latency in network transfer. Similar
observations are also validated by EC-Cache [58], in which the de-
coding time takes about 30% of the read time. However, previous
studies (e.g., EC-Cache [58] and Sprout [10]) do not address the
encoding and decoding overhead when employing erasure-coded
caching. Our measurement indicates that to sustain the perfor-
mance improvement of parity-only caching, we should reduce the
encoding/decoding overhead in the I/O path.

Second, how to design an efficient cache algorithm to mitigate
the impact of stragglers remains a challenging issue. Many cache
algorithms aim to maximize the hit ratio (i.e., the ratio that the re-
quested data has been cached) by making caching decisions based
on the file access pattern only. For example, EC-Cache [58] directly
employs the least recently used (LRU) cache algorithm, which is
also the default cache algorithm in Alluxio [45]. Existing cache al-
gorithms study the tradeoff between the hit ratio and the latency
when different objects have different access costs [21,44,62,71],
but how to manage the parity-only cache space (i.e., which parity
blocks to cache) to minimize the probability of hitting stragglers
still remains an open issue.

Last but not least, our parity-only caching design should be
independent of the underlying storage systems; in other words,
our design can be generalized for different storage systems and
support the upper-layer applications. The dependency on the char-
acteristics of a specific storage systems can restrict the application
of the design to other systems; for example, Sprout [10] assumes
the caching data resides on the client side or in a proxy-based
caching tier. Furthermore, it is important that our design should
161
have limited overhead on the I/O workflows of the underlying stor-
age systems.

3. POCache design

We present POCache, a parity-only caching approach that pro-
vides robust straggler tolerance for distributed storage systems.
POCache aims for the following goals: (i) mitigating the encod-
ing and decoding overhead to avoid degrading I/O performance;
(ii) managing the cache space to decrease the probability of hit-
ting stragglers for I/O requests; (iii) preserving the data layouts
and access protocols of the underlying storage systems to achieve
generality.

We summarize the main ideas of POCache as follows. We first
mitigate the coding overhead via block slicing and incremental
encoding (Section 3.1) to exploit the full parallelism of encoding
and decoding operations. Note that both features have been shown
to significantly reduce the repair latency in erasure-coded storage
[46,47,52]; here, we leverage these features to mitigate the encod-
ing and decoding overhead in the context of caching and hence
achieve effective straggler tolerance. We then design a configurable
straggler-aware cache algorithm that carefully manages the cache
space based on the file access popularity and the estimation of
the straggler existence (Section 3.3). Currently, POCache supports
write-once-read-many workloads (Section 1) and does not support
updates, appends, or partial file writes. Such a scenario is reason-
able for HDFS, which is designed for data analytics (e.g., MapRe-
duce) [3].

We assume that parity blocks are generated on a per-file ba-
sis, such that each file is of large size and spans k > 1 data blocks
that can be encoded together. Such an assumption holds for cloud
storage workloads. For example, Microsoft OneDrive is reportedly
dominated by large objects, in which almost 90% of objects are
over 100 MiB [23]. POCache is designed to reduce the access la-
tencies of a file in the presence of stragglers. Note that the coding
parameters (n, k) in POCache are independent of those of the un-
derlying storage systems.

3.1. Mitigating coding overhead

Block slicing: Our observation is that the actual erasure coding
functionalities under Galois Field arithmetic (Section 2) perform in
small-size coding units (e.g., bytes) [56]. Specifically, the n blocks
of a stripe are divided into coding units, such that the coding
units at the same offset across the n blocks are independently
encoded/decoded. Thus, we can slice blocks into smaller-size sub-
blocks (e.g., 1 MiB) and perform encoding/decoding at the subblock
level. Fig. 5 shows the idea of block slicing, in which the subblocks
at the same offset of the n blocks in a stripe form a substripe.

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172

Fig. 5. Block slicing. Di and C j respectively denote the i-th data block and the j-th parity block, where 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ m − 1.
Instead of encoding k large blocks to generate parity blocks for
the whole stripe, we divide the stripe into multiple substripes,
in which we encode k data subblocks in each substripe to gen-
erate m = n − k parity subblocks. Since the substripes are indepen-
dently encoded/decoded, the encoding/decoding operations across
different substripes can be parallelized, and the encoding/decoding
overhead can be masked. For each parity block being cached, we
now cache its corresponding parity subblocks.

Incremental encoding: In addition to block slicing, we employ in-
cremental encoding to further exploit the parallelization of encod-
ing when we generate parity subblocks to cache. Our observation
is that in practical erasure codes (e.g., RS codes), a parity sub-
block is encoded via a linear combination of k data subblocks, and
the addition operations are associative. Thus, we can incrementally
compute a parity subblock from the data subblocks one by one,
instead of waiting for all k data subblocks to be available before
starting the encoding operation. Note that incremental encoding
does not increase the computing cost of encoding. This can be
regarded as pipelining the arrival of blocks with encoding. If the
blocks never arrive, incremental encoding will receive the ending
mark of the data stream and complete the encoding process; oth-
erwise, incremental encoding waits for next blocks to arrive.

We use an example to elaborate the idea. Suppose that a parity
subblock c0 is generated from k = 3 data subblocks d0, d1, and d2

as: c0 = α0d0 + α1d1 + α2d2, where α0, α1, and α2 are encoding
coefficients, and both the addition and multiplication operations
are in Galois Field arithmetic. Incremental encoding decomposes
the encoding operation into three steps: (i) c′

0 = α0d0 (when d0

is written); (ii) c′′
0 = c′

0 + α1d1 (when d1 is written); and (iii)
c0 = c′′

0 + α2d2 (when d2 is written), where c′
0 and c′′

0 are inter-
mediate results. Thus, incremental encoding can start the encoding
operation as soon as a data subblock arrives while a stream of data
subblocks is written, and both the write and incremental encoding
operations are done in parallel.

3.2. Choice of (n, k) erasure codes

We now discuss how to select an appropriate (n, k) erasure
code, so as to tolerate stragglers effectively while achieving low
usage of the cache space.

Selection of k: The selection of k determines the cache space usage.
With a smaller k, POCache forms more stripes for a file and hence
caches more parity blocks. In practice, the value of k is jointly de-
termined by the distribution of file sizes and the available capacity
of the cache space. We evaluate the impact of different values of k
in Section 5.

Selection of n: Recall that caching only one parity block can reduce
the probability of hitting stragglers even under different values of
k (Fig. 3(a)). Thus, we set n, such that m = n − k = 1, in our imple-
mentation and evaluation based on the value of k.
162
3.3. Configurable straggler-aware cache algorithm

We propose a configurable straggler-aware cache (CSAC) algo-
rithm to manage the cache space, with the objective of minimizing
the straggler hit ratio (i.e., the ratio of read requests that hit strag-
glers). We design CSAC by taking into account both the estimation
of existing stragglers and file access popularity. In particular, CSAC
is configurable, in the sense that it is extensible for different cache
management algorithms depending on the workload characteris-
tics.

Straggler estimation: CSAC considers the existence of stragglers
when making decisions on caching. To minimize the straggler hit
ratio, CSAC prefers to cache parity blocks for the files that would
be affected by stragglers. Thus, CSAC estimates the presence of
stragglers based on the monitoring information. Specifically, CSAC
identifies the straggler nodes and records them in a straggler list as
follows. It periodically collects each node’s service rate (denoted by
ν), defined as the ratio of the amount of data being served to the
service time being taken. It calculates the mean value (denoted by
μ) and standard deviation (denoted by σ) of all service rates. Fi-
nally, it identifies the stragglers according to the three-sigma rule
[57], in which the nodes whose ν < μ − 3σ are treated as abnor-
mal and included in the straggler list.

Generalized cache management: To capture the file access popu-
larity, CSAC supports generalized cache management by allowing
both the cache admission and cache eviction algorithms to be con-
figurable.

• Cache admission: The cache admission algorithm decides whether
to cache the parity blocks of an accessed file that has no cached
parity blocks. A simple cache admission algorithm is cache-upon-
access (i.e., always caching the parity blocks of the accessed file).
Other algorithms can take into account the frequency [27] and
object size [20] information.

• Cache eviction: The cache eviction algorithm decides which par-
ity blocks of a file to evict from cache when the available cache
space is insufficient. The decision often depends on the recency
and frequency of file accesses. Examples of cache eviction algo-
rithms include least recently used (LRU) (i.e., evicting the file
that is the least recently accessed), least frequently used (LFU)
(i.e., evicting the file that the lowest accessed frequency), and
adaptive replacement cache (ARC) [51] (i.e., evicting a file deter-
mined jointly by its recency and frequency).

Our current CSAC implementation realizes cache-upon-access
for cache admission, and LRU, LFU, and ARC for cache eviction.

Cache prefetching: CSAC supports cache prefetching to proactively
tolerate stragglers. Based on the straggler list estimated as above,
we can determine whether reading a file would hit a straggler, and
hence prefetch the parity blocks of the file into the cache space. A
question here is whether a file would be accessed in near future.
Given the limited cache space, it is ineffective to simply cache all
the files which have data blocks residing in straggler nodes.

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172
CSAC uses a file access prediction algorithm to decide which
files should have their parity blocks prefetched into the cache
space. The algorithm aims to predict how likely a file is to be
accessed based on the historical access pattern. One example of
the prediction algorithm is to leverage the file access recency pat-
tern, such that the more recently accessed file is more likely to
be accessed soon. In this case, the prediction algorithm can re-
turn the list of files sorted by the latest access times of all files.
The prediction algorithm is also configurable with other predic-
tion approaches, such as predicting the file popularity based on
the number of concurrent accesses and the file size [14].

CSAC triggers cache prefetching when new stragglers are de-
tected. If a file is predicted to be accessed soon and has some
blocks residing in the straggler nodes, CSAC prefetches its parity
blocks into the cache space. To avoid prefetching too much data
that leads to high I/O overhead, CSAC ensures that the amount of
parity blocks prefetched each time is no more than a configurable
ratio (denoted by θp) of the total cache size. If there is insufficient
space for caching parity blocks, CSAC evicts some cached parity
blocks according to the eviction algorithm.

Algorithm details: CSAC caches parity blocks for the files that are
admitted to cache or affected by existing stragglers. Specifically,
CSAC caches the parity blocks for a file if there exists a node that
stores the data blocks of the file and is recorded in the strag-
gler list (denoted by S). If no straggler node is detected (i.e., S is
empty), CSAC decides whether to cache the parity blocks of a file
based on the cache admission algorithm (denoted by Ga). It also
chooses which parity blocks of a file to evict from cache based on
the cache eviction algorithm (denoted by Ge). If prefetching is en-
abled, it predicts the files that are likely accessed soon via the file
access prediction algorithm (denoted by G p) and caches the parity
blocks of the files affected by the stragglers.

Algorithm 1 elaborates the workflow of CSAC. It first initializes
the total amount of cache space T and the available cache space
A where A = T (in unit of blocks) (line 1). It also initializes the
cache admission algorithm Ga , the cache eviction algorithm Ge ,
the file access prediction algorithm G p , and the prefetching ra-
tio θp (line 2). It manages the cache space according to the latest
straggler list S , which is updated periodically (line 3). For every
read request to a file f , CSAC calls a function Query, which deter-
mines if the file f should be cached. If the parity blocks of f have
already been cached, the Query function returns cached (lines 5-
6). When f is not cached, CSAC returns shouldCache if (i) the
cache admission algorithm Ga decides to cache f while the strag-
gler list is empty or (ii) the estimated stragglers store data blocks
of f (lines 7-8); otherwise, it declines to bring f into cache by
returning shouldNotCache (lines 9-11). Then another function
Update is called with the result of Query which is named deci-

sion. In the Update function, CSAC first updates the information
on file f (e.g., access recency and frequency) (line 14). If decision

is shouldCache (i.e., the parity blocks of f should be cached but
have not been cached before), CSAC evicts the files chosen by cache
eviction policy until there is enough cache space (lines 15-23),
caches the parity blocks of f (line 24). Note that Update returns
the files to be evicted for caching the new parity blocks (line 26).

If cache prefetching is enabled and new straggler nodes are de-
tected, CSAC calls the Prefetch function to obtain a list of files for
cache prefetching. When a file f is predicted to be read in near
future (line 31), CSAC further checks if the data blocks of f are
stored in any existing straggler node and f is not cached and if the
amount of parity blocks to prefetch does not exceed the prefetch
limit (i.e., T × θp); if so, CSAC includes f into the list of files for
cache prefetching (lines 32-38). Finally, the Prefetch function re-
turns the list of files to be prefetched (line 40).

Remarks: Compared to SAC proposed in [75], CSAC generalizes
the cache management with different admission/eviction policies
163
Algorithm 1 Configurable straggler-aware cache algorithm.
1: Initialize the total amount of cache space T and the amount of avail-

able cache space A = T
2: Initialize the cache admission algorithm Ga , the cache eviction algo-

rithm Ge , the file access prediction algorithm G p , and the prefetching
ratio θp

3: Given the latest list of straggler nodes S
4: function Query(f)

5: if parity blocks of f are cached then
6: return cached
7: else if (S is empty AND Ga decides to cache f) OR (some nodes

in S store the data blocks of f) then
8: return shouldCache
9: else

10: return shouldNotCache
11: end if
12: end function
13: function Update(f , decision)

14: Update the information on f
15: Initialize the set of files to be evicted, E = {}
16: if decision == shouldCache then
17: n f ← number of parity blocks to cache for f
18: while A < n f do
19: e ← file decided by Ge to be evicted
20: A ← A + number of parity blocks of e in cache
21: Add e to E
22: end while
23: A ← A − n f
24: Cache the parity blocks of f
25: end if
26: return E
27: end function
28: function Prefetch()

29: Initialize the set of files to be prefetched, P = {}
30: Set the amount of cache space for prefetching, N = 0
31: for file f predicted to read by G p do
32: if some nodes in S store data blocks of f AND file f is not

cached then
33: n f ← number of parity blocks to cache for f
34: if N + n f ≤ T ∗ θp then
35: Add f to P
36: N ← N + n f
37: end if
38: end if
39: end for
40: return P
41: end function

and incorporates cache prefetching to tolerate stragglers proac-
tively. Actually, SAC is a special case of CSAC which uses cache-
upon-access as admission algorithm and LRU as eviction algorithm
without prefetching. CSAC further reduces the straggler hit ratio by
incorporating different eviction policies. And with prefetching en-
abled, CSAC reduces the 95th-percentile latency, especially under
limited cache space. Our evaluation results in Section 5.3 demon-
strate the effectiveness of CSAC with different configurations under
different cache sizes.

4. Implementation

We implement POCache on Hadoop 3.1 HDFS [3] and describe
the implementation details as below.

4.1. Reads in HDFS

HDFS is a distributed file system that stores data across mul-
tiple servers in a fault-tolerant manner [61]. It comprises a single
NameNode and multiple DataNodes. The NameNode is in charge of
maintaining the system metadata and managing the file system

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172
Fig. 6. Integration of POCache into HDFS.

namespace, while DataNodes are responsible for storing the file
data in units of fixed-size blocks. To protect against data loss, the
earlier versions of HDFS employ replication as the only redundancy
mechanism and store multiple copies (i.e., replicas) for each block
in different DataNodes. Since Hadoop 3, HDFS supports both repli-
cation and erasure coding as the redundancy techniques.

Hadoop 3.1 HDFS adopts different data layouts for replication
and erasure coding. For replication, it adopts the contiguous layout,
where each logical block is stored alone in each node; while for
erasure coding, it employs the striping layout, where each logical
file block is divided into smaller units called cells that are dis-
tributed across multiple DataNodes (Section 2.1). POCache works
for both contiguous and striping layouts.

Since Hadoop 2.4, HDFS provides straggler tolerance via hedged
reads (for replication-based storage only). Specifically, if a client
issues a read request and receives no response after some time
(called the waiting threshold), it issues another read request to a
block replica stored in a different DataNode and uses the earli-
est response as the result. Thus, the performance of hedged reads
is related to the waiting threshold, where a small threshold may
falsely generate duplicate requests while a large threshold prolongs
the latency.

4.2. Integration

Fig. 6 shows how POCache is implemented based on HDFS. We
highlight the implementation details below.

Manager: Inside the NameNode, we add a module called the Man-
ager, which tracks the cached parity blocks, performs cache admis-
sion and eviction decisions according to the specified algorithms,
and manages cache prefetching operations.

When the client writes a file to HDFS, the NameNode is first
contacted and it asks the Manager whether to cache its parity
blocks or not. As the newly written files are likely to be accessed
again later [14], the Manager allows to cache their parity blocks if
there remains enough cache space. Note that the NameNode does
not know the file size until the ending of the write process. Thus,
we prepare to reserve enough available space for a file to cache
its parity blocks. The maximum number of parity blocks of a file
depends on several parameters, including the largest file size that
POCache can cache for during writes, block size, and the num-
ber of data blocks per stripe (k), all of which are specified in the
configuration.

When the client reads a file, the NameNode first identifies
the block locations of the file. It then checks with the Manager
whether there is any cached parity block for the file. If so, the
locations of both data blocks and the parity blocks are returned
to the client. We adopt proactive reads, in which the client issues
reads to the k data blocks (i.e., the original file) and the cached
parity blocks, such that the client can immediately decode the file
once receiving any k blocks (either data or parity blocks). Proactive
reads eliminate the impact of the waiting thresholds as in hedged
reads, and do not need to know in advance which DataNodes are
the stragglers. Since the redundancy overhead of erasure coding
(i.e., m) is limited and modern data centers now typically have
k

164
sufficient network bandwidth (e.g., 10 Gbps or even larger), the ad-
ditional network traffic due to the extra reads has limited impact
on read performance.

The Manager manages the cache space according to the cache
admission and eviction algorithms specified in CSAC (Section 3.3).
For straggler estimation, the Manager maintains a separate thread
to update the straggler list periodically. For every file request, the
Manager calls the Query function to obtain the admission decision
made by the cache admission algorithm. Also, the Manager calls
the Update function based on the returned result of the Query

function to update file access information and obtain the eviction
decision.

For cache prefetching, the Manager starts a separate thread to
prefetch the parity blocks into the cache space. Specifically, when
new straggler nodes are detected and cache prefetching is enabled,
the Manager first calls the Prefetch function to obtain the list of
files for caching. The separate thread then retrieves the data blocks
from the files, generates the parity blocks, and adds the parity
blocks into the cache space.

Client: We modify the HDFS client to augment its read/write oper-
ations to support POCache. Specifically, for writes, we modify the
classes DFSOutputStream and DFSStripedOutputStream
to generate and cache parity blocks for any newly written files. For
reads, we modify the classes DFSInputStream and DFSStri-
pedInputStream, such that the metadata of the cached parity
blocks of the file being read is transferred to the client together
with the block locations. The HDFS client implements both block
slicing and incremental encoding, and interacts with the Manager
on the caching operation (i.e., the client performs encoding and
caches the parity blocks if the Manager admits a file into the
cache). Note that we do not modify applications that run atop
HDFS to ensure that our integration is transparent to the upper-
layer applications. That is, they can still issue normal reads/writes
through the HDFS client interface.

DataNode: Each DataNode monitors a sendBlock function (i.e.,
the function that sends data from the storage node to the client) by
recording the amount of data sent and elapsed time. Then, every
DataNode reports its service rate to the Manager through periodi-
cal heartbeats for the maintenance of the straggler list.

Cache: We implement the cache as a key-value store using Redis
[7]. We use the Java client interface, Jedis [6], to connect to the
Redis cache. Note that the cache can be deployed alongside the
DataNodes in the HDFS cluster. Our microbenchmarks (Section 5.2)
show that the read performance of the Redis cache is faster and
more stable than that of a DataNode.

5. Evaluation

We now show via evaluation that POCache effectively provides
straggler tolerance for Hadoop 3.1 HDFS under both contiguous
and striping layouts. Our evaluation aims to answer the following
questions:

• What is the read performance of POCache with and without
stragglers compared to other read mechanisms?

• What are the performance breakdowns of read/write operations
in POCache? Can block slicing and incremental encoding effec-
tively mitigate the overhead of coding operations?

• Can the CSAC algorithm effectively manage the cache space?

We evaluate POCache on a local cluster (Sections 5.1-5.3) and
Amazon EC2 (Section 5.4). The local cluster provides a controlled
environment for us to configure the existence of stragglers, while
Amazon EC2 enables us to evaluate the natural existence of strag-
glers in open environments. Compared with our conference ver-
sion [75], we add new evaluation results (i.e., Experiments 6, 10,

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172

Fig. 7. Experiment 1 (Single-client reads under the contiguous layout).
and 13-15) and update Experiments 11-12, by evaluating the per-
formance of POCache on running MapReduce workloads and the
caching efficiency of CSAC.

5.1. Read performance

We first evaluate the read performance of POCache with and
without stragglers on a local cluster (Experiments 1-5). We then
evaluate the performance of running MapReduce workloads in Ex-
periment 6.

Local cluster setup: Our local cluster consists of 15 machines, each
of which is installed with Ubuntu 16.04 (with the Linux ext4 file
system) and has a quad-core Intel Core i5-3570 3.40 GHz CPU,
16 GiB RAM, and a Seagate ST1000DM003 7200RPM 1 TiB SATA
disk. All machines are connected via a 10 Gbps Ethernet switch.
The disk access (with a sequential read bandwidth of 156 MiB/s) is
the bottleneck during file accesses. We use one dedicated machine
for data caching by running Redis, and deploy Hadoop 3.1 HDFS
on the remaining 14 machines. In the deployment of HDFS, we
run the NameNode on one machine, and execute a variable num-
ber of DataNodes and HDFS clients on the remaining 13 machines
(see details below).

We employ the benchmarking tool DFS-Perf [1] to gener-
ate write/read workloads (i.e., dfs-perf SimpleWrite/Sim-
pleRead) as configured (which is specified in each experiment),
and collect the elapsed time results of all I/O requests (i.e.,
dfs-perf-collect SimpleWrite/SimpleRead). We run
the Linux tool stress [8] (i.e., stress -i 1) on a DataNode,
which issues sync commands to exhaust the local I/O resources,
to inject a straggler on the local cluster.

By default, we set the block size and the subblock size as
64 MiB and 1 MiB, respectively, and allocate the cache space to
store 100 blocks (i.e., T = 100 in Algorithm 1). We disable cache
prefetching and later specifically evaluate the effect of cache
prefetching. We realize cache-upon-access for cache admission and
LRU for cache eviction. We set k = 4, such that a file is composed
of four data blocks. We focus on single-client performance, while
we also evaluate multi-client performance.

Experiment 1 (Single-client reads under the contiguous layout):
We first consider the contiguous layout, in which one client issues
a read request to a file of size equal to k blocks (k = 4, 6, 8, 10
respectively). We compare POCache with the following: (i) the de-
fault reads in HDFS (named Vanilla), (ii) hedged reads in HDFS
(HR) (Section 4.1), and (iii) parallel reads (PR), in which a client
issues reads to multiple data blocks in parallel without deploying
POCache.

For both Vanilla and PR, we deploy k DataNodes and store each
of the k blocks in one DataNode. We disable replication, so any
straggler DataNode is expected to slow down the file read. For
165
HR, we use k + 1 DataNodes and 2-way replication (i.e., two repli-
cas for each block), so that if one of the DataNodes becomes a
straggler, HR can read the other replica from the remaining nor-
mal k DataNodes. Also, we set the waiting threshold of HR as zero
(i.e., HR always issues duplicate requests to read a block), since our
evaluation shows that in this setting HR can achieve the best per-
formance in the presence of stragglers. For POCache, we deploy k
DataNodes to store the k data blocks and cache one parity block
in a separate cache node. We repeat each experiment for ten runs,
and show the average result with the standard deviation repre-
sented by the error bars.

Figs. 7(a) and 7(b) depict the average single-client read laten-
cies without any straggler and with one straggler, respectively.
Without any straggler, PR and POCache have the smallest read
latency as they retrieve the blocks in parallel; HR has a higher la-
tency than Vanilla because HR introduces additional overhead by
doubling all I/O requests. In the presence of a straggler, the read
latencies of Vanilla and PR increase with high variance. POCache
reduces the average read latency by 81.7-85.2% and 40.4-77.5%
compared to Vanilla and HR, respectively. This shows that straggler
tolerance is attributed to parity-only caching rather than issuing
parallel reads.

Experiment 2 (Single-client reads under the striping layout): We
consider single-client reads under the striping layout. Note that HR
is not supported under the striping layout, and Vanilla retrieves
data blocks in parallel like PR. Thus, we consider Vanilla and
POCache only. We use the same deployment as in the contigu-
ous layout, and read a file of size equal to k blocks (k = 4, 6, 8, 10
respectively).

Figs. 8(a) and 8(b) depict the average single-client read laten-
cies without any straggler and with one straggler, respectively.
When there is no straggler, Vanilla and POCache have similar read
latencies, although POCache has a slightly higher latency for the
same file size. The reason is that POCache reads one more parity
block for each request than Vanilla and performs decoding opera-
tion if the first k received blocks include the parity block. However,
when there is a straggler, the latencies of Vanilla increase to almost
five times of those without straggler for all file sizes. POCache
keeps the latencies as in the case without any straggler, and re-
duces the latencies of Vanilla by 73.0-87.9%.

Experiment 3 (Impact of skewed workload): We study the la-
tency characteristics under skewed read workload, after evaluating
single-file read performance in the previous experiments. We first
generate a skewed workload as follows. We write 100 four-block
files to HDFS and then issue 2,000 reads to the files following a
Zipf distribution with a Zipfian constant of 0.9 (Zipf-0.9). Note that
for the contiguous layout, we replace PR with selective replication
(SR) in the comparison. SR not only inherits the read parallelism
from PR, but also resists against stragglers by caching data blocks

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172

Fig. 8. Experiment 2 (Single-client reads under the striping layout).

Fig. 9. Experiment 3 (Impact of skewed workload).

Fig. 10. Experiment 4 (Impact of multi-size workload).
of the popular files. Thus, comparing POCache with SR allows to
evaluate whether caching parity blocks can achieve more perfor-
mance gains than caching data blocks.

Fig. 9 illustrates the read latencies under the contiguous and
striping layouts. The mean latency here shows the average read
time of the system (same for Experiments 4-5, 12, and 14-16). For
the contiguous layout, by caching a number of popular blocks, SR
has a lower median latency than HR. However, the tail latencies
of SR sharply increase and are higher than those of HR, as some
blocks in the straggler are not cached. POCache always achieves
the lowest latency and it reduces the 95th-percentile latency by
83.3% compared to Vanilla. For the striping layout, Vanilla is se-
riously affected by the straggler, where its 99th-percentile latency
is about seven times of the median latency. In contrast, POCache
keeps stable latencies in the presence of stragglers.

Experiment 4 (Impact of multi-size workload): We evaluate the
read performance of files of different sizes under the same read
access pattern as in Experiment 3 (i.e., Zipf-0.9). We write 100 files
166
of different sizes into HDFS, in which there are 15 512-MiB files,
30 256-MiB files, 17 128-MiB files, and 38 64-MiB files, by follow-
ing the characteristics of data stored in the Facebook cluster [58].
We set k = 4 and m = 1. For a file smaller than four blocks, we
pad the file with zeros to a full stripe (i.e., four blocks), stripe it
in either contiguous layout or striping layout, and generate a par-
ity block for caching. Fig. 10 depicts the read latencies. We observe
that POCache can still achieve the lowest read latency. Compared
to Vanilla, POCache reduces the read latency by 68.9-81.9% for the
contiguous layout, and 50.8-76.8% for the striping layout, respec-
tively.

Experiment 5 (Impact of multi-client reads): We study the read
performance with multiple clients. We deploy 4, 8, and 12 clients
in the 15-machine cluster; note that some clients may be co-
located with a DataNode in the same machine. We first write 100
four-block files into HDFS, and then generate a read workload with
the same skewness (i.e., Zipf-0.9) for each client. In this experi-

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172

Fig. 11. Experiment 5 (Impact of multi-client reads): (i) 4 clients; (ii) 8 clients; and (iii) 12 clients.

Fig. 12. Experiment 6 (Performance of MapReduce workloads).
ment, we consider the average and 95th-percentile latencies as the
latter reflects the tail latency.

Figs. 11(a) and 11(b) show the read latencies under the con-
tiguous and striping layouts, respectively. In general, the read la-
tencies of all mechanisms increase when more clients issue read
requests. Compared to SR, POCache has a slightly larger mean
latency, but a much lower 95th-percentile latency. Compared to
Vanilla, POCache reduces the average read latency by 41.1-57.3%
and 31.1-34.2%, and the 95th-percentile read latency by 32.6-55.4%
and 31.7-41.8%, under contiguous and striping layouts, respectively.

Experiment 6 (Performance of MapReduce workloads): We evalu-
ate the performance of running MapReduce jobs with Vanilla and
POCache. We use HiBench [4] to run three MapReduce workloads
(i.e., wordcount, sort, and terasort), with 128 256 MiB files as in-
put. We set the split size, the data unit of each mapper/reducer
to process, as 256 MiB. For POCache, we set the cache space to
200 (i.e., T = 200). To inject a straggler, we run stress (i.e.,
stress -i 32 -d 8 --hdd-bytes 16MiB) on a DataNode
to limit the sequential read bandwidth (about 3.1 MiB/s), so as to
degrade the performance of executing a map/reduce task. We plot
the average execution time of each job over ten runs, including the
error bars with the 95% confidence intervals. Fig. 12 shows the la-
tencies of POCache and Vanilla on executing MapReduce jobs in
normal cases and with one straggler. In normal cases, POCache
achieves similar performance to Vanilla. When there is a straggler,
POCache reduces the latency of three workloads by 13.0-29.3%,
because POCache bypasses the slowest node with cached parity
blocks when reading input data from servers.

5.2. Microbenchmarks

We conduct microbenchmarks for read/write operations and
MapReduce workloads.
167
Table 2
Experiment 7 (Microbenchmarks on writes).

Subblock size Encoding Caching Overhead

0.25 MiB 0.05 ms 0.60 ms 14.11%
0.5 MiB 0.09 ms 1.00 ms 10.57%
1 MiB 0.20 ms 1.87 ms 8.18%
2 MiB 0.44 ms 3.28 ms 12.15%
4 MiB 0.96 ms 6.55 ms 16.37%
8 MiB 1.89 ms 12.94 ms 22.33%

Experiment 7 (Microbenchmarks on writes): We first study the ef-
ficiency of writing a data stream to the Redis cache through block
slicing and incremental encoding. The data stream is composed
of four 64-MiB blocks, each of which is further partitioned into a
number of subblocks. We measure the time for the following two
phases when the subblock size varies: (i) encoding, which refers to
the encoding step at the client that produces a new intermediate
parity subblock by incorporating the newly-arrived data subblock
with the intermediate parity subblock that has been calculated in
the last step, and (ii) caching, which refers to the procedure of
transferring the generated parity subblocks from the HDFS client to
the cache node. POCache performs encoding and caching in par-
allel, and the write latency denotes the elapsed time of encoding
and caching the data stream. We ignore the preparation that cre-
ates the data blocks before encoding, as the preparation time is
very little. We also calculate the overhead of introducing encoding
and caching in the write path. Suppose that the write latencies of
POCache and Vanilla are l and l∗ respectively. Then the overhead
is calculated as l−l∗

l∗ .
Table 2 shows the average results under different subblock

sizes, indicating that POCache introduces no more than 23% of
overhead in writes when compared to Vanilla. Also, POCache
achieves the lowest overhead (i.e., 8.18%) when the subblock is 1-
MiB.

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172
Table 3
Experiment 8 (Microbenchmarks on reads).

Mean Stdev

Normal DataNode 7.38 ms 9.22 ms
Straggler DataNode 51.61 ms 53.67 ms
Cache node 4.92 ms 2.16 ms

Fig. 13. Experiment 9 (Read latencies versus different subblock sizes).

Table 4
Experiment 10 (Microbenchmarks on MapReduce workloads).

Map Reduce Read

Vanilla 30.36 s 52.72 s 26.94 s
POCache 26.63 s 41.45 s 23.10 s

Experiment 8 (Microbenchmarks on reads): We investigate the ef-
ficiency of reading data from the cache. Table 3 shows the average
latencies and their standard deviations of reading a 1-MiB subblock
from a normal DataNode, a straggler, and the Redis cache, respec-
tively. The time of reading data from the straggler is more than
seven times of that from the normal DataNode, which shows the
necessity of mitigating stragglers in data reads. Reading data from
the Redis cache takes the least time, justifying that caching can be
effective to mitigate stragglers.

Experiment 9 (Read latencies under different subblock sizes): We
verify the effectiveness of block slicing. We set the block size as
64 MiB and vary the subblock size from 0.25 MiB to 64 MiB. We
write a four-block file and read it for 200 times under each sub-
block size. Fig. 13 depicts the average read latencies under dif-
ferent subblock sizes. We can observe that the read latency is
influenced by the subblock size, where the read latency increases
if the subblock size is too small (e.g., 0.25 MiB) or too large (e.g.,
64 MiB). The lowest mean and tail latencies can be achieved when
the subblock size is 1 MiB.

Experiment 10 (Microbenchmarks on MapReduce workloads): We
study the breakdown performance of running wordcount job in the
presence of stragglers. We use the same setting as in Experiment 6.
Table 4 shows the mean latency of map tasks, reduce tasks, and
reads at runtime. POCache achieves lower map/reduce latencies
than Vanilla because POCache spends less time in reading the in-
put. The read latency here is longer than reading a four-block file
directly because the read latency includes the processing time of a
MapReduce task as it reads data from the input and feeds it into
the Mapper/Reducer.

5.3. Caching efficiency

We compare CSAC with different cache algorithms. We write
100 four-block files to HDFS and issue 2,000 read requests follow-
ing a Zipf distribution with a Zipfian constant of 0.9, to collect the
straggler hit ratios and read latencies under different cache sizes
(Experiments 11-15).
168
Fig. 14. Experiment 11 (Straggler hit ratio under different cache sizes).

Experiment 11 (Straggler hit ratio under different cache sizes):
We first measure the straggler hit ratio of LRU, ARC, LFU, and CSAC
under different cache sizes. Note that in the experiment, POCache
uses the four cache algorithms to manage the cached parity blocks,
with a difference that CSAC is straggler-aware while the remaining
three algorithms are not. Here, we set the admission policy of CSAC
as cache-upon-access and the eviction policy as LRU, ARC, LFU re-
spectively, denoted by CSAC+LRU, CSAC+ARC, CSAC+LFU. We then
vary the cache size from 0 to 100 (in unit of blocks).

Fig. 14 shows the straggler hit ratio under different cache sizes.
The straggler hit ratios generally decrease when the cache size be-
comes larger and CSAC achieves the smallest straggler hit ratio
among all the four cache algorithms. As a straggler-aware cache
algorithm, CSAC is more effective in reducing the straggler hit ra-
tio when the cache size is small. For example, when the cache size
is 40, CSAC reduces the straggler hit ratio below 2.5%, while other
three cache algorithms still incur around 10% of straggler hit ra-
tios. When the cache size is 100, the Redis cache is large enough
to keep all parity blocks associated with the data blocks that have
been accessed, therefore the straggler hit ratios of all the cache
algorithms reach zero.

Recall that CSAC with LRU is equivalent to SAC proposed in our
earlier conference version [75] (Section 3.3). Although the strag-
gler hit ratio of CSAC+LRU is lower than that of the cache algo-
rithms without straggler awareness (i.e., LRU, ARC, and LFU), it is
higher than those of CSAC+LFU and CSAC+ARC (both of which have
very similar results). For example, when the cache size is 10, the
straggler hit ratio of CSAC+LRU (19.5%) almost doubles those of
CSAC+LFU (10.8%) and CSAC+ARC (11.5%). Only when the cache size
is larger than 60, all three configurations for CSAC achieve similar
straggler hit ratios. This shows the significance of allowing config-
urability in CSAC, as it can support different cache management
algorithms to mitigate the straggler hit ratio.

Experiment 12 (Read latencies under different cache sizes): We
study the latencies of LRU, ARC, LFU, and CSAC under different
cache sizes. We vary the cache size from 40 to 80, and measure
the mean and the 95th-percentile latencies of different cache algo-
rithms. Fig. 15 presents the read latencies under different cache
sizes. We see that the read latencies decrease with the cache
size. CSAC achieves the lowest latencies as it mitigates the strag-
gler hit ratio. When the cache size is 40 (i.e., 10% of the number
of data blocks written), CSAC+LRU, CSAC+ARC, and CSAC+LFU re-
duce the 95th-percentile latency by 72.1-75.8%, 84.2-86.3%, and
83.5-85.7% compared to other cache algorithms without straggler
awareness, respectively. When the cache size is 80, all cache algo-
rithms achieve low read latencies because 80% of files have parity
blocks in cache.

Experiment 13 (Impact of different cache strategies): To evalu-
ate the efficacy of caching parity and data, we compare POCache
(CSAC+LFU) with caching data of a file according to different cache
management algorithms: (i) SR, which only considers access pat-

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172
Fig. 15. Experiment 12 (Read latencies under different cache sizes): (i) cache size =
40; (ii) cache size = 60; (iii) cache size = 80.

Fig. 16. Experiment 13 (Impact of different cache strategies) Straggler hit ratio under
different cache sizes.

Fig. 17. Experiment 14 (Read latencies of different cache strategies): (i) cache size =
40; (ii) cache size = 60; (iii) cache size = 80.

tern using LFU algorithm (as LFU achieves the lowest straggler hit
ratio among LRU and ARC); (ii) DC1, which only caches the data
block on the estimated straggler node; and (iii) DC2, which man-
ages the data caching with CSAC+LFU, i.e., considering both access
pattern and straggler estimation. Fig. 16 shows the straggler hit ra-
tio of different cache strategies under different cache sizes. SR has
the highest straggler hit ratio across different cache sizes because
it only considers the file access pattern. DC1 achieves a slightly
lower straggler hit ratio than DC2 as it specifically caches the data
blocks on the straggler node, but has a little higher straggler hit
ratio than POCache. POCache achieves the lowest straggler hit ra-
tio because caching parity blocks tolerates the straggler even when
the estimation is inaccurate.

Experiment 14 (Read latencies of different cache strategies):
Fig. 17 shows the read latencies of different cache strategies under
different cache sizes. We compare POCache with the data cache
strategies used in Experiment 13 (i.e., SR, DC1, DC2) and OR, which
only reads from the healthy node under three-way replication. SR
has the longest read latencies because it has the highest strag-
169
Fig. 18. Experiment 15 (Read latencies with cache prefetching).

gler hit ratio. OR, DC1, and DC2 achieve similar performance by
only requesting data blocks from healthy nodes or caching specific
data blocks, which shows their efficacy in mitigating the impact of
straggler nodes. POCache achieves the lowest read latencies as the
cached parity can always tolerate the slowest node during reads.

Experiment 15 (Read latencies with cache prefetching): We now
enable cache prefetching in CSAC and study its efficacy. Here, the
file access prediction uses the file access recency to decide the list
of files for cache prefetching. We use LFU as the eviction policy of
CSAC (i.e., CSAC+LFU), which outperforms CSAC+LRU and achieves
similar results to that of CSAC+ARC. We set the prefetching ratio
θp as 40%. Fig. 18 depicts the read latencies of LRU, ARC, LFU, CSAC
when the cache size is 20. When cache prefetching is enabled,
CSAC reduces the 95th-percentile read latency by 48.8% compared
to without cache prefetching. Note that cache prefetching incurs a
slightly higher 99th-percentile latency since the cache prefetching
process needs to retrieve data blocks for parity block generation,
thereby incurring extra I/O overhead.

Summary: Our proposed CSAC achieves the smallest straggler hit
ratios and the lowest read latencies among all the measured cache
algorithms. For example, when the cache size is 40, CSAC reduces
the straggler hit ratio below 2.5% and reduces the 95th-percentile
latency by up to 85.7%. When cache prefetching is enabled, CSAC
can further reduce the read latencies; for example, it reduces the
95th-percentile read latency by 48.8% when the cache size is 20.

5.4. Amazon EC2 experiments

Experiment 16 (Read performance on Amazon EC2): We evaluate
the performance of POCache on a Amazon EC2 cluster. We deploy
Hadoop atop 30 m5.large instances, where we use 28 instances
as DataNodes and let the remaining two instances be the client
and the NameNode, respectively. We also start one m5.2xlarge
instance to serve as the cache node by running Redis. The under-
lying hardwares of these machines are shared by multiple tenants.
The network bandwidth is around 5 Gbps and all machines are
equipped with magnetic storage. We set k = 4 and m = 1, and
write 300 four-block files (i.e., 1,200 data blocks in total) into
HDFS. We then generate 1,000 read requests by following the Zipf
distribution with a Zipfian constant of 0.9. We set the cache size as
120 (in unit of blocks), which is 10% of the number of data blocks
stored in HDFS.

Fig. 19 shows the read latencies under the contiguous and strip-
ing layouts. We make two observations. First, stragglers naturally
appear in the cloud environment, as the I/O and computational re-
sources are shared and competed among different cloud users. For
example, the 99th-percentile latency of Vanilla is 68.3% larger than
its median latency. Second, POCache tolerates stragglers robustly
by caching parity blocks even though the straggler estimation is
inaccurate in such an environment where the stragglers fluctuate.

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172

Fig. 19. Experiment 16 (Read performance on Amazon EC2).
POCache achieves the lowest latency among all the four policies.
Specifically, POCache reduces the mean and 95th-percentile laten-
cies of Vanilla by 64.3% and 63.9% under the contiguous layout,
and by 30.9% and 42.4% under the striping layout.

6. Related work

Straggler tolerance: A large body of studies have addressed the
straggler problem in different aspects, especially data-parallel pro-
cessing frameworks [16,63,69,72]. We review these studies because
the scenario they target is similar to ours where reading a file re-
quires to retrieve all of its blocks. LATE [72] handles the straggler
by estimating the remaining time of each task and executing spec-
ulatively those which would degrade the job. Mantri [16] monitors
the MapReduce jobs and culls the slow tasks given the causes
identified. Dolly [15] clones the small jobs in order to skip the
waiting phase in the speculative execution. Wrangler [69] moni-
tors the resource utilization of the cluster and schedules the tasks
carefully to avoid the potential stragglers. PBSE [63] is a path-
based speculative execution to tolerate the network throughput
degradation. IASO [55] detects stragglers based on timeout signals
and isolates them to mitigate their impact. Some recent studies
[17,60] mitigate the impact of straggler tasks with coding to re-
duce the job completion time in distributed computing systems.
In the context of storage, POCache tolerates stragglers with ad-
ditional redundancy. Some studies [11,41,65] present theoretical
analysis of redundancy for straggler mitigation, while our analysis
mainly studies the straggler hit ratios of different caching mecha-
nisms.

Erasure coding: Recent studies explore the use of erasure coding
to improve read performance. Cocytus [73] and MemEC [70] store
entire erasure-coded stripes in memory for low-latency access.
EC-Cache [58] addresses load imbalance by splitting and encod-
ing individual objects into stripes that are stored in the memory
entirely. In contrast, POCache only caches parity blocks to toler-
ate the presence of stragglers. Specifically, POCache caches only
one parity block for each file, which is shown to be effective in
straggler tolerance based on our analysis. Some studies address
stragglers in erasure-coded storage systems, in which all data is
persistently stored in erasure-coded form. Hu et al. [36] propose
proactive degraded reads to reduce the tail latency due to de-
graded reads (which trigger more I/Os than normal reads). Li et
al. [48] perform erasure coding across sectors on hard disks, so
that local file systems can recover from transient sector-read fail-
ures without triggering read retries. EC-Store [9] avoids retriev-
ing chunks from the heavy-loaded servers by placing and moving
chunks dynamically in erasure-coded storage systems. Agar [33]
caches the fragments in the remote site for geo-distributed store
with erasure coding to minimize the read latency. TTLCache [12]
170
is a novel caching policy for jointly optimizing mean and tail la-
tency in erasure-coded storage. Liu et al. [50] propose an offline
caching scheme according to future data popularity and network
latency information to achieve low latency in distributed coded
storage systems. The closest related work to ours is Sprout [10],
which shows that caching erasure-coded data can reduce access
latency. The main differences between Sprout and our work in-
clude: (i) We show via mathematical analysis that caching only
one parity block is effective to mitigate the impact of stragglers,
and thus POCache only caches one parity block instead of multi-
ple parity blocks in Sprout; (ii) POCache proposes the straggler hit
ratio to measure the probability of hitting stragglers, and a config-
urable straggler-aware cache algorithm to manage the cache space
to reduce the straggler hit ratio, while Sprout is not specifically de-
signed to bypass stragglers; (iii) Sprout keeps erasure-coded data
either on the client side or in a proxy-based caching tier, while our
caching tier can be deployed alongside the storage nodes (Fig. 2);
(iv) Sprout does not address how to mitigate the non-negligible
encoding/decoding overhead for large files as in our work; and (v)
Sprout targets erasure-coded storage (like [36,48]), while our work
can be applied to any form of storage (either replicated or erasure-
coded). Note that the latter three differences are mainly related to
the implementation.

Caching: To enable low-latency storage services, modern stor-
age systems deploy in-memory caches (e.g., Memcached [30,53],
Redis [7], ElastiCache [2]) to buffer frequently accessed objects.
Recent studies [18,25,28,29,49] further improve the internal per-
formance or hit ratios of in-memory caches. Alluxio (formerly
called Tachyon) [45] provides in-memory fault tolerance via lin-
eage for data-intensive applications. NetCache [40] realizes caching
in programmable network switches. RobinHood [19] proposes tail-
latency-aware caching, which identifies the cache-poor backends
and shifts cache space from other backends to the cache-poor
backends. POCache targets straggler tolerance with emphasis on
robustness and space efficiency.

7. Conclusion

We present POCache, a robust approach of caching parity
blocks with a dedicated cache algorithm to mitigate the perfor-
mance degradations due to stragglers. We first analyze the effec-
tiveness of parity-only caching, which achieves a low probability
of hitting stragglers with limited cache space. To apply it in real-
world storage systems, we propose block slicing and incremental
encoding to reduce the encoding and decoding penalties. We fur-
ther design a configurable straggler-aware cache algorithm (CSAC)
that takes into account the file popularity and straggler appear-
ance when managing the cache space. CSAC allows users to con-
figure different cache management algorithms and support cache
prefetching. Our evaluation results on both local and Amazon EC2

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172
clusters demonstrate the effectiveness of POCache in achieving ro-
bust straggler tolerance. Our future work is to enable data updates,
appends, and partial file writes in POCache. To support these func-
tions, we need to update the cached parity blocks efficiently and
make the cached parity blocks consistent with the data blocks be-
longing to the same stripe.

CRediT authorship contribution statement

Mi Zhang: Conceptualization, Data curation, Formal analysis,
Methodology, Software, Writing – original draft. Qiuping Wang: In-
vestigation, Software, Validation. Zhirong Shen: Writing – review
& editing. Patrick P.C. Lee: Conceptualization, Funding acquisition,
Project administration, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by Research Grants Coun-
cil of Hong Kong (AoE/P-404/18), the National Key R&D Program
of China (2021YFF0704001), Natural Science Foundation of China
(No. 62072381), and CCF-Huawei Innovation Research Plan (CCF-
HuaweiST2021003).

References

[1] DFS-Perf, http://pasa -bigdata .nju .edu .cn /dfs -perf.
[2] ElastiCache, https://aws .amazon .com /elasticache/.
[3] HDFS 3.1, https://hadoop .apache .org /release /3 .1.1.html.
[4] HiBench, https://github .com /Intel -bigdata /HiBench.
[5] ISA-L, https://software .intel .com /en -us /storage /ISA-L.
[6] Jedis, https://github .com /xetorthio /jedis.
[7] Redis, https://redis .io/.
[8] Stress, https://linux .die .net /man /1 /stress.
[9] M. Abebe, K. Daudjee, B. Glasbergen, Y. Tian, EC-store: bridging the gap be-

tween storage and latency in distributed erasure coded systems, in: Proc. of
IEEE ICDCS, 2018.

[10] V. Aggarwal, Y.-F.R. Chen, T. Lan, Y. Xiang, Sprout: a functional caching ap-
proach to minimize service latency in erasure-coded storage, IEEE/ACM Trans.
Netw. 25 (Dec. 2017) 3683–3694.

[11] M.F. Aktaş, E. Soljanin, Straggler mitigation at scale, IEEE/ACM Trans. Netw.
27 (6) (2019) 2266–2279.

[12] A.O. Al-Abbasi, V. Aggarwal, TTLCache: taming latency in erasure-coded storage
through TTL caching, IEEE Trans. Netw. Serv. Manag. 17 (3) (2020) 1582–1596.

[13] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center net-
work architecture, in: Proc. of ACM SIGCOMM, 2008.

[14] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Har-
lan, E. Harris, Scarlett: coping with skewed content popularity in MapReduce
clusters, in: Proc. of ACM EuroSys, 2011.

[15] G. Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica, Effective straggler miti-
gation: attack of the clones, in: Proc. of USENIX NSDI, 2013.

[16] G. Ananthanarayanan, S. Kandula, A.G. Greenberg, I. Stoica, Y. Lu, B. Saha, E.
Harris, Reining in the outliers in map-reduce clusters using Mantri, in: Proc. of
USENIX OSDI, 2010.

[17] A. Badita, P. Parag, V. Aggarwal, Single-forking of coded subtasks for straggler
mitigation, IEEE/ACM Trans. Netw. 29 (6) (2021) 2413–2424.

[18] N. Beckmann, H. Chen, A. Cidon, LHD: improving cache hit rate by maximizing
hit density, in: Proc. of USENIX NSDI, 2018.

[19] D.S. Berger, B. Berg, T. Zhu, S. Sen, M. Harchol-Balter, Robinhood: tail latency
aware caching - dynamic reallocation from cache-rich to cache-poor, in: Proc.
of USENIX OSDI, 2018.

[20] D.S. Berger, R.K. Sitaraman, M. Harchol-Balter, AdaptSize: orchestrating the hot
object memory cache in a content delivery network, in: Proc. of USENIX NSDI,
2017.

[21] A. Blankstein, S. Sen, M.J. Freedman, Hyperbolic caching: flexible caching for
web applications, in: Proc. of USENIX ATC, 2017.

[22] Z. Cao, V. Tarasov, H.P. Raman, D. Hildebrand, E. Zadok, On the performance
variation in modern storage stacks, in: Proc. of USENIX FAST, 2017.
171
[23] Y.L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, D. Phillips, Giza: erasure coding
objects across global data centers, in: Proc. of USENIX ATC, 2017.

[24] Y. Cheng, A. Gupta, A.R. Butt, An in-memory object caching framework with
adaptive load balancing, in: Proc. of EuroSys, 2015.

[25] A. Cidon, D. Rushton, S.M. Rumble, R. Stutsman, Memshare: a dynamic multi-
tenant key-value cache, in: Proc. of USENIX ATC, 2017.

[26] J. Dean, L.A. Barroso, The tail at scale, Commun. ACM 56 (2) (Feb. 2013) 74–80.
[27] G. Einziger, R. Friedman, B. Manes, Tinylfu: a highly efficient cache admission

policy, ACM Trans. Storage 13 (4) (2017) 1–31.
[28] A. Eisenman, A. Cidon, E. Pergament, O. Haimovich, R. Stutsman, M. Alizadeh,

S. Katti, Flashield: a hybrid key-value cache that controls flash write amplifica-
tion, in: Proc. of USENIX NSDI, 2019.

[29] B. Fan, D.G. Andersen, M. Kaminsky, MemC3: compact and concurrent Mem-
Cache with dumber caching and smarter hashing, in: Proc. of USENIX NSDI,
2013.

[30] B. Fitzpatrick, Distributed caching with memcached, Linux J. (2004).
[31] D. Ford, F. Labelle, F.I. Popovici, M. Stokel, V.-A. Truong, L. Barroso, C. Grimes, S.

Quinlan, Availability in globally distributed storage systems, in: Proc. of USENIX
OSDI, 2010.

[32] H.S. Gunawi, R.O. Suminto, R. Sears, C. Golliher, S. Sundararaman, X. Lin, T.
Emami, W. Sheng, N. Bidokhti, C. McCaffrey, et al., Fail-slow at scale: evi-
dence of hardware performance faults in large production systems, in: Proc.
of USENIX FAST, 2018.

[33] R. Halalai, P. Felber, A.-M. Kermarrec, F. Taïani, Agar: a caching system for
erasure-coded data, in: Proc. of IEEE ICDCS, 2017.

[34] M. Hao, G. Soundararajan, D. Kenchammana-Hosekote, A.A. Chien, H.S. Gunawi,
The tail at store: a revelation from millions of hours of disk and SSD deploy-
ments, in: Proc. of USENIX FAST, 2016.

[35] Y.-J. Hong, M. Thottethodi, Understanding and mitigating the impact of load
imbalance in the memory caching tier, in: Proc. of ACM SoCC, 2013.

[36] Y. Hu, Y. Wang, B. Liu, D. Niu, C. Huang, Latency reduction and load balancing
in coded storage systems, in: Proc. of ACM SoCC, 2017.

[37] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, S. Yekhanin, et
al., Erasure coding in windows azure storage, in: Proc. of USENIX ATC, 2012.

[38] P. Huang, C. Guo, L. Zhou, J.R. Lorch, Y. Dang, M. Chintalapati, R. Yao, Gray
failure: the Achilles’ heel of cloud-scale systems, in: Proc. of ACM HotOS, 2017.

[39] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D.A. Freedman, K.B.R. van Renesse,
Characterizing load imbalance in real-world networked caches, in: Proc. of ACM
HotNets, 2014.

[40] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, I. Stoica, NetCache:
balancing key-value stores with fast in-network caching, in: Proc. of ACM SOSP,
2017.

[41] G. Joshi, Y. Liu, E. Soljanin, On the delay-storage trade-off in content down-
load from coded distributed storage systems, IEEE J. Sel. Areas Commun. 32 (5)
(2014) 989–997.

[42] S. Kiani, N. Ferdinand, S.C. Draper, Exploitation of stragglers in coded compu-
tation, in: Proc. of IEEE ISIT, 2018.

[43] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, K. Ramchandran, Speeding up
distributed machine learning using codes, IEEE Trans. Inf. Theory 64 (3) (2017)
1514–1529.

[44] C. Li, A.L. Cox, GD-wheel: a cost-aware replacement policy for key-value stores,
in: Proc. of EuroSys, 2015.

[45] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, I. Stoica, Tachyon: reliable, memory
speed storage for cluster computing frameworks, in: Proc. of ACM SoCC, 2014.

[46] R. Li, X. Li, P.P.C. Lee, Q. Huang, Repair pipelining for erasure-coded storage, in:
Proc. of USENIX ATC, 2017.

[47] X. Li, R. Li, P.P.C. Lee, Y. Hu, OpenEC: toward unified and configurable erasure
coding management in distributed storage systems, in: Proc. of USENIX FAST,
2019.

[48] Y. Li, H. Wang, X. Zhang, N. Zheng, S. Dahandeh, T. Zhang, Facilitating mag-
netic recording technology scaling for data center hard disk drives through
filesystem-level transparent local erasure coding, in: Proc. of USENIX FAST,
2017.

[49] H. Lim, D. Han, D.G. Andersen, M. Kaminsky, MICA: a holistic approach to fast
in-memory key-value storage, in: Proc. of USENIX NSDI, 2014.

[50] K. Liu, J. Peng, J. Wang, J. Pan, Optimal caching for low latency in distributed
coded storage systems, IEEE/ACM Trans. Netw. (2021).

[51] N. Megiddo, D.S. Modha, ARC: a self-tuning, low overhead replacement cache,
in: Proc. of USENIX FAST, 2003.

[52] S. Mitra, R. Panta, M.-R. Ra, S. Bagchi, Partial-parallel-repair (PPR): a distributed
technique for repairing erasure coded storage, in: Proc. of ACM EuroSys, 2016.

[53] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H.C. Li, R. McElroy, M.
Paleczny, D. Peek, P. Saab, et al., Scaling memcache at Facebook, in: Proc. of
USENIX NSDI, 2013.

[54] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, J. Kelly, The quantcast file
system, in: Proc. of VLDB Endowment, 2013.

[55] B. Panda, D. Srinivasan, H. Ke, K. Gupta, V. Khot, H.S. Gunawi, IASO: a fail-slow
detection and mitigation framework for distributed storage services, in: Proc.
of USENIX ATC, 2019.

http://pasa-bigdata.nju.edu.cn/dfs-perf
https://aws.amazon.com/elasticache/
https://hadoop.apache.org/release/3.1.1.html
https://github.com/Intel-bigdata/HiBench
https://software.intel.com/en-us/storage/ISA-L
https://github.com/xetorthio/jedis
https://redis.io/
https://linux.die.net/man/1/stress
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib2A1988BFFF4108B82257DE4FB38B758Fs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib2A1988BFFF4108B82257DE4FB38B758Fs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib2A1988BFFF4108B82257DE4FB38B758Fs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib328EC4272A3D97AFC9919A20E43FE1AAs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib328EC4272A3D97AFC9919A20E43FE1AAs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib328EC4272A3D97AFC9919A20E43FE1AAs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib43FF94C0CB908844F7A67223B82950A4s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib43FF94C0CB908844F7A67223B82950A4s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibF05E82DAEBBAC865B8C1E8CC4976BF4Ds1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibF05E82DAEBBAC865B8C1E8CC4976BF4Ds1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib677266EF4D61D6C14442404BD7F04B5Bs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib677266EF4D61D6C14442404BD7F04B5Bs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib27EF12FEF4F43D51F256132D68055073s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib27EF12FEF4F43D51F256132D68055073s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib27EF12FEF4F43D51F256132D68055073s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibCD086D22F00A8EA922A1676BC5EBFA85s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibCD086D22F00A8EA922A1676BC5EBFA85s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib1A72E516EA562C880669815550049C01s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib1A72E516EA562C880669815550049C01s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib1A72E516EA562C880669815550049C01s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib1B8F353FA4A1ACB901B992FFF34B7028s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib1B8F353FA4A1ACB901B992FFF34B7028s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibDDD7F9D8AC95AF75EBA02D90F22A9F59s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibDDD7F9D8AC95AF75EBA02D90F22A9F59s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibD87073EEBF31E1B8FE9E5454D35B6204s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibD87073EEBF31E1B8FE9E5454D35B6204s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibD87073EEBF31E1B8FE9E5454D35B6204s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib93A34C849735DCD80F4EF2C1E6EEA0B2s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib93A34C849735DCD80F4EF2C1E6EEA0B2s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib93A34C849735DCD80F4EF2C1E6EEA0B2s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib4929F85921F7FF7E5B918C083BF0E30As1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib4929F85921F7FF7E5B918C083BF0E30As1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib9DFE6C0B1909FAC750D4855A07B9EA0Cs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib9DFE6C0B1909FAC750D4855A07B9EA0Cs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib62870B519DA6D29756D07FB92F2710E7s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib62870B519DA6D29756D07FB92F2710E7s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib469A17C81A7925EEE5F66C10CE8D9EA7s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib469A17C81A7925EEE5F66C10CE8D9EA7s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib0D393BA0F35AF43CA604D2485E50A1F5s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib0D393BA0F35AF43CA604D2485E50A1F5s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibE872A61754935EF0D2FCF1E9DFEE9DACs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib7AF45A11A7C428C103AF345A3A59564Bs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib7AF45A11A7C428C103AF345A3A59564Bs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib84FD49963EEAB1A29C329C9CFD875BF0s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib84FD49963EEAB1A29C329C9CFD875BF0s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib84FD49963EEAB1A29C329C9CFD875BF0s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib7CF6AB83DA0DEAD446B20019342AC3F3s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib7CF6AB83DA0DEAD446B20019342AC3F3s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib7CF6AB83DA0DEAD446B20019342AC3F3s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib39F6E317DD872AB5021C3AA1E035EF49s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib5097BF806CA6EEEBA183FB44754D6D17s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib5097BF806CA6EEEBA183FB44754D6D17s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib5097BF806CA6EEEBA183FB44754D6D17s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib19DB36C083E4C3B55FFA3F3E562CFE5Ds1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib19DB36C083E4C3B55FFA3F3E562CFE5Ds1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib19DB36C083E4C3B55FFA3F3E562CFE5Ds1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib19DB36C083E4C3B55FFA3F3E562CFE5Ds1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib8533E774FE2B134005BD64FAAE33CD5Ds1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib8533E774FE2B134005BD64FAAE33CD5Ds1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibE54310FEECB45DED8C6B32F07DD0F9A3s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibE54310FEECB45DED8C6B32F07DD0F9A3s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibE54310FEECB45DED8C6B32F07DD0F9A3s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib1950483B6660F22A6E269B54561D59ABs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib1950483B6660F22A6E269B54561D59ABs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibDA25E619CDF073C8B8E38778E5B858E5s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibDA25E619CDF073C8B8E38778E5B858E5s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib1FF030B7FC9E1303A8074D4EFA67348Cs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib1FF030B7FC9E1303A8074D4EFA67348Cs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibF691E0BDEF0992A0CC10C8784C227A79s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibF691E0BDEF0992A0CC10C8784C227A79s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibF7B25B60C1EA82C715A58CE28AAFA452s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibF7B25B60C1EA82C715A58CE28AAFA452s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibF7B25B60C1EA82C715A58CE28AAFA452s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib90E3927E45F201E679192568F0A774D3s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib90E3927E45F201E679192568F0A774D3s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib90E3927E45F201E679192568F0A774D3s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibDC3A89E0D6D4F96D34B40DAC1AE1F9FAs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibDC3A89E0D6D4F96D34B40DAC1AE1F9FAs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibDC3A89E0D6D4F96D34B40DAC1AE1F9FAs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib37ACF59A49166850EEE5BD4C49329A9As1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib37ACF59A49166850EEE5BD4C49329A9As1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib9B3BF3FE5EE9D8F6DFBAB6EFDCBDCC0Fs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib9B3BF3FE5EE9D8F6DFBAB6EFDCBDCC0Fs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib9B3BF3FE5EE9D8F6DFBAB6EFDCBDCC0Fs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib151BE86260D016DC8C7E2AB22776843Cs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib151BE86260D016DC8C7E2AB22776843Cs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib0E460F455D7D9E891CC9C3220A81DEF8s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib0E460F455D7D9E891CC9C3220A81DEF8s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib286196A021ECA649F05E958536B62B91s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib286196A021ECA649F05E958536B62B91s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib3A24C7B5FEFBBC142E9A7418863FB2ECs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib3A24C7B5FEFBBC142E9A7418863FB2ECs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib3A24C7B5FEFBBC142E9A7418863FB2ECs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibAB43886294F2977C80B748D8A2FA6929s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibAB43886294F2977C80B748D8A2FA6929s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibAB43886294F2977C80B748D8A2FA6929s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibAB43886294F2977C80B748D8A2FA6929s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib83608BA6C8C93AB5E1D83EDFC87BBF20s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib83608BA6C8C93AB5E1D83EDFC87BBF20s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib562F5D6B8E3EE6E5B646424CDEB73535s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib562F5D6B8E3EE6E5B646424CDEB73535s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib023C202653FDE19D0981DB1B0BD96ADAs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib023C202653FDE19D0981DB1B0BD96ADAs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib904AE010D975C680D01383D7C7D81789s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib904AE010D975C680D01383D7C7D81789s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib85EE4FA4CA099277CAC8BAF092FF83E6s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib85EE4FA4CA099277CAC8BAF092FF83E6s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib85EE4FA4CA099277CAC8BAF092FF83E6s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibFDB86A90A25A4BDBF89FD0DF6B48841Ds1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibFDB86A90A25A4BDBF89FD0DF6B48841Ds1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib0714E19D454FA470E16360EFC4B07AB8s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib0714E19D454FA470E16360EFC4B07AB8s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib0714E19D454FA470E16360EFC4B07AB8s1

M. Zhang, Q. Wang, Z. Shen et al. Journal of Parallel and Distributed Computing 167 (2022) 157–172
[56] J.S. Plank, J. Luo, C.D. Schuman, L. Xu, Z. Wilcox-O’Hearn, A performance eval-
uation and examination of open-source erasure coding libraries for storage, in:
Proc. of USENIX FAST, 2009.

[57] F. Pukelsheim, The three sigma rule, Am. Stat. 48 (2) (1994) 88–91.
[58] K. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, K. Ramchandran, EC-cache: load-

balanced, low-latency cluster caching with online erasure coding, in: Proc. of
USENIX OSDI, 2016.

[59] I.S. Reed, G. Solomon, Polynomial codes over certain finite fields, J. Soc. Ind.
Appl. Math. 8 (2) (1960) 300–304.

[60] S. Sasi, V. Lalitha, V. Aggarwal, B.S. Rajan, Straggler mitigation with tiered gra-
dient codes, IEEE Trans. Commun. 68 (8) (2020) 4632–4647.

[61] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The Hadoop distributed file sys-
tem, in: Proc. of IEEE MSST, 2010.

[62] H. Sigurbjarnarson, P.O. Ragnarsson, J. Yang, Y. Vigfusson, M. Balakrishnan, En-
abling space elasticity in storage systems, in: Proc. of ACM SYSTOR, 2016.

[63] R.O. Suminto, C.A. Stuardo, A. Clark, H. Ke, T. Leesatapornwongsa, B. Fu, D.H.
Kurniawan, V. Martin, M.R.G. Uma, H.S. Gunawi, PBSE: a robust path-based
speculative execution for degraded-network tail tolerance in data-parallel
frameworks, in: Proc. of ACM SoCC, 2017.

[64] P.L. Suresh, M. Canini, S. Schmid, A. Feldmann, C3: cutting tail latency in cloud
data stores via adaptive replica selection, in: Proc. of USENIX NSDI, 2015.

[65] D. Wang, G. Joshi, G. Wornell, Using straggler replication to reduce latency
in large-scale parallel computing, ACM SIGMETRICS Perform. Eval. Rev. 43 (3)
(2015) 7–11.

[66] H. Weatherspoon, J.D. Kubiatowicz, Erasure coding vs. replication: a quantita-
tive comparison, in: Proc. of IPTPS, Mar 2002.

[67] S.A. Weil, S.A. Brandt, E.L. Miller, D.D. Long, C. Maltzahn, Ceph: a scalable, high-
performance distributed file system, in: Proc. of USENIX OSDI, 2006.

[68] Y. Xu, Z. Musgrave, B. Noble, M. Bailey, Bobtail: avoiding long tails in the cloud,
in: Proc. of USENIX NSDI, 2013.

[69] N.J. Yadwadkar, G. Ananthanarayanan, R. Katz, Wrangler: predictable and faster
jobs using fewer resources, in: Proc. of ACM SoCC, 2014.

[70] M.M.T. Yiu, H.H.W. Chan, P.P.C. Lee, Erasure coding for small objects in in-
memory KV storage, in: Proc. of ACM SYSTOR, 2017.

[71] N. Young, The k-server dual and loose competitiveness for paging, Algorithmica
11 (6) (1994) 525–541.

[72] M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, I. Stoica, Improving MapRe-
duce performance in heterogeneous environments, in: Proc. of USENIX OSDI,
2008.

[73] H. Zhang, M. Dong, H. Chen, Efficient and available in-memory KV-store with
hybrid erasure coding and replication, in: Proc. of USENIX FAST, 2016.

[74] M. Zhang, S. Han, P.P.C. Lee, A simulation analysis of reliability in erasure-coded
data centers, in: Proc. of IEEE SRDS, 2017.

[75] M. Zhang, Q. Wang, Z. Shen, P.P.C. Lee, Parity-only caching for robust straggler
tolerance, in: Proc. of IEEE MSST, 2019.

[76] T. Zhu, A. Tumanov, M.A. Kozuch, M. Harchol-Balter, G.R. Ganger, PriorityMeis-
ter: tail latency QoS for shared networked storage, in: Proc. of ACM SoCC, 2014.

Mi Zhang received the B.Eng. degree in Software
Engineering from Shandong University in 2014, and
the Ph.D. degree in Computer Science and Engineering
from the Chinese University of Hong Kong in 2019.
She is now a postdoctoral researcher at The Chinese
University of Hong Kong. Her research interests in-
clude distributed systems and storage reliability.

Qiuping Wang received the B.Eng. degree in Com-
puter Science from Huazhong University of Science
and Technology in 2018. He is now a Ph.D. student
at the Department of Computer Science and Engineer-
ing, the Chinese University of Hong Kong. His research
interests span distributed storage systems and net-
working systems.

Zhirong Shen received the B.S. degree from Uni-
versity of Electronic Science and Technology of China
in 2010, and the Ph.D. degree in Computer Science
from Tsinghua University in 2016. He is now an As-
sociate Professor of the College of Informatics at Xia-
men University. His current research interests include
designing and building secure and dependable tech-
niques for large-scale storage systems and data cen-
ters.

Patrick P.C. Lee received the B.Eng. degree (first-
class honors) in Information Engineering from the
Chinese University of Hong Kong in 2001, the M.Phil.
degree in Computer Science and Engineering from the
Chinese University of Hong Kong in 2003, and the
Ph.D. degree in Computer Science from Columbia Uni-
versity in 2008. He is now a Professor of the De-
partment of Computer Science and Engineering at the
Chinese University of Hong Kong. His research inter-

ests are in various applied/systems topics on improving the dependability
of large-scale software systems, including storage systems, distributed sys-
tems and networks, and cloud computing.
172

http://refhub.elsevier.com/S0743-7315(22)00113-7/bibC7FE9F624A2C4EB9E13389C777B4E9CBs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibC7FE9F624A2C4EB9E13389C777B4E9CBs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibC7FE9F624A2C4EB9E13389C777B4E9CBs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibE6767C526E7F94DB76FA5C1899E0381Ds1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib7DF2B2239003140FD66B0495A39CA2C5s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib7DF2B2239003140FD66B0495A39CA2C5s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib7DF2B2239003140FD66B0495A39CA2C5s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibB5721B6C923695A3F64C322F4CF4B679s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibB5721B6C923695A3F64C322F4CF4B679s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib27FBE3D933D53DC08F664B59A7DA47E4s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib27FBE3D933D53DC08F664B59A7DA47E4s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibE18A5BB92A69B4732ADEDD31169E3071s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibE18A5BB92A69B4732ADEDD31169E3071s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib32D373BC614EB0835EEC89838D3E3C5Es1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib32D373BC614EB0835EEC89838D3E3C5Es1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib514C38A003E17B645E3E4888FBC0A3ACs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib514C38A003E17B645E3E4888FBC0A3ACs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib514C38A003E17B645E3E4888FBC0A3ACs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib514C38A003E17B645E3E4888FBC0A3ACs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib19017728A2DCA0859392C1688B3A985Fs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib19017728A2DCA0859392C1688B3A985Fs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib531B40C7D579467BB0BA7F924F29CA64s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib531B40C7D579467BB0BA7F924F29CA64s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib531B40C7D579467BB0BA7F924F29CA64s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib45810D2D38F6665238A8D4E915D64D02s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib45810D2D38F6665238A8D4E915D64D02s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibAE6A34CDF565DCDCC67AB9305B9AC950s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibAE6A34CDF565DCDCC67AB9305B9AC950s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib2380B3BFAFF9B603C7C6CFDFD1C1F3A3s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib2380B3BFAFF9B603C7C6CFDFD1C1F3A3s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib39E25DC7D5C0D902937DEF96A7C19D7Fs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib39E25DC7D5C0D902937DEF96A7C19D7Fs1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib1A842A1B3E6516A7F0AF9B9C4B9E3145s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib1A842A1B3E6516A7F0AF9B9C4B9E3145s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib7D53B85285BF7C76D0C50099FF54CD2Es1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib7D53B85285BF7C76D0C50099FF54CD2Es1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib5B851686B6716E18FD7DACADA802139As1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib5B851686B6716E18FD7DACADA802139As1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib5B851686B6716E18FD7DACADA802139As1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib9BF90C201939625E3273096B143C149Ds1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib9BF90C201939625E3273096B143C149Ds1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib1D50DDCBDC2F8B7DEF2097FB92DBA136s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib1D50DDCBDC2F8B7DEF2097FB92DBA136s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibCC3551A2CE30064B8713125F39FAC910s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bibCC3551A2CE30064B8713125F39FAC910s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib68A79BD8011FA043797D4AC6F25C39B2s1
http://refhub.elsevier.com/S0743-7315(22)00113-7/bib68A79BD8011FA043797D4AC6F25C39B2s1

	POCache: Toward robust and configurable straggler tolerance with parity-only caching
	1 Introduction
	2 Background and motivation
	2.1 Basics
	2.2 Analysis
	2.2.1 Independent stragglers only
	2.2.2 Correlated stragglers

	2.3 Challenges

	3 POCache design
	3.1 Mitigating coding overhead
	3.2 Choice of (n,k) erasure codes
	3.3 Configurable straggler-aware cache algorithm

	4 Implementation
	4.1 Reads in HDFS
	4.2 Integration

	5 Evaluation
	5.1 Read performance
	5.2 Microbenchmarks
	5.3 Caching efficiency
	5.4 Amazon EC2 experiments

	6 Related work
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

