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ABSTRACT
RDMA (Remote Direct Memory Access) is widely studied in build-
ing key-value stores to achieve ultra-low latency. In RDMA-based
key-value stores, the indexing time takes a large fraction of the over-
all operation latency as RDMA enables fast data access. However,
the single index structure used in existing RDMA-based key-value
stores, either hash-based or sorted index, fails to support range
queries efficiently while achieving high performance for single-
point operations. In this paper, we explore the adoption of a hybrid
index in the key-value stores based on RDMA, especially under the
memory disaggregation architecture, to combine the benefits of a
hash table and a sorted index. We propose HStore, an RDMA-based
key-value store that uses a hash table for single-point lookups and
leverages a skiplist for range queries to index the values stored in
the memory pool. Guided by previous work on using RDMA for
key-value services, HStore dedicatedly chooses different RDMA
verbs to optimize the read and write performance. To efficiently
keep the index structures within a hybrid index consistent, HStore
asynchronously applies the updates to the sorted index by shipping
the update log via two-sided verbs. Compared to state-of-the-art
Sherman and Clover, HStore improves the throughput by up to
54.5% and 38.5% respectively under the YCSB benchmark.
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1 INTRODUCTION
Key-value store is a vital component in modern data centers for
building various applications.Many existing systems, such as databases,
social networks, online retail, andweb services, use key-value stores
as storage engines. The simple interfaces (e.g., PUT, GET, SCAN)
and high performance of key-value stores enable users to efficiently
store and access a large volume of data. Remote Direct Memory Ac-
cess (RDMA) is widely explored to improve the performance of key-
value stores in recent years, namely RDMA-based or RDMA-enabled
key-value stores [9, 17, 23, 28, 39, 41]. RDMA communication pro-
vides two types of primitives, one-sided verbs allow direct access
to the data in remote memory without involving the server CPU,
and two-sided verbs enable fast message-based data transfer (like
the conventional network protocols). The RDMA-based key-value
stores utilize different RDMA verbs to provide key-value services,
which can be classified into server-centric, client-direct, and hybrid-
access designs. The server-centric stores only use two-sided verbs
to support key-value operations, while the client-direct designs
only leverage one-sided RDMA reads and writes. The hybrid-access
stores exploit both one-sided and two-sided verbs for CPU efficiency
and low latency, which combines the benefits of the server-centric
and client-direct designs.

When handling key-value operations, indexing plays a critical
role in the whole process, especially for RDMA-based key-value
stores under the memory disaggregation architecture. Memory dis-
aggregation separates the monolithic servers into independent com-
ponents that are connected via high-speed RDMA networks, in-
creasing resource utilization and hardware scalability [13, 30, 34].
With the support of memory disaggregation, the upper-layer ap-
plications can allocate a large amount of memory space and share
the data in the memory pool with other applications efficiently. As
RDMA significantly reduces the network communication overhead,
the proportion of the software layer cost increases in the whole op-
eration [26]. For single-point operations, the indexing performance
largely determines the overall performance because retrieving a
value from the memory pool through one-sided verbs can be very
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fast. Thus, it is necessary to reduce the indexing latency when
building low-latency key-value stores based on RDMA [34, 44].

Existing RDMA-based key-value stores typically leverage a single
index for key lookups, either hash-based [6, 9, 17, 19, 23, 28, 35, 39,
44] or sorted (e.g., tree-backed, skiplist) [7, 10, 20, 29, 37, 43]. The
hashing index locates a key-value pair based on the hash value of
the key, which provides fast single-key lookups and can be easily
completed using one-sided verbs. For example, RACE [44] hashing
index executes all index requests using only one-sided RDMA verbs.
However, it is hard to deal with range queries (i.e., SCAN) based
on a hashing index. Thus, some RDMA-based key-value stores
(e.g., Sherman [34]) choose a sorted index that maintains the order
of key-value pairs to provide efficient range queries. Though the
sorted index supports rich key-value operations, the sorted index
incurs longer latency than the hashing index for single-key lookups.
Searching along a sorted index requires the involvement of the
server CPU to complete within one round trip; otherwise, it incurs
multiple round trips if only using one-sided RDMA reads.

To provide rich key-value services with low latency, it is promis-
ing to combine a hash table and a sorted index for single-key
lookups and range queries respectively in RDMA-based key-value
stores. HiKV [40] realizes the idea of a hybrid index on a single
server with hybrid memory and demonstrates the performance
improvement of key-value operations. However, adopting a hybrid
index in RDMA-based key-value stores under memory disaggrega-
tion poses new challenges. First, index management requires keep-
ing two different index structures consistent with the key-value
items in an efficient manner. Though the disaggregated memory
provides high scalability for data storage, the memory server has
little computing resource to handle the updates on the hybrid index.
Thus, how to mitigate the management overhead of a hybrid index
with strong consistency remains an open issue. Furthermore, as
failures in distributed systems are commonplace, the key-value
stores should consider how to support key-value services using the
hybrid index and reconstruct the index under server failures.

We present HStore, an RDMA-based key-value store that com-
bines a hash table and a skiplist to support rich key-value operations
with high indexing performance. HStore leverages the monolithic
servers as the index servers to efficiently manage the hybrid index
with strong consistency, and stores the key-value pairs in the mem-
ory pool to benefit from the disaggregated memory. HStore places
the hash table and the skiplist on two index servers separately,
called hash table server (HTS) and skiplist server (SLS), to protect
the hybrid index against server failures. To minimize the write
latency, HStore batches the index updates in a log, ships the update
log from the HTS to the SLS, and applies the updates to the skiplist
asynchronously. It allows hybrid access using different RDMA verbs
for CPU efficiency and low latency. That is, HStore uses two-sided
verbs for write operations to guarantee strong consistency; for read
requests, it uses one-sided verbs for GET operations to bypass the
server CPU, and leverages two-sided verbs for range queries to
simplify the design complexity of sorted index without degrading
the SCAN performance. To the best of our knowledge, HStore is
the first RDMA-based key-value store that leverages a hybrid index
for key-value services under memory disaggregation.

We summarize our contributions as follows.

• We analyze the usage of a single index in RDMA-based key-value
stores and motivate the adoption of a hybrid index by comparing
the performance of different indexes.

• We propose HStore that combines a hashing index and a sorted
index to support efficient single-key lookups and range queries
via different RDMA verbs. HStore consistently updates the two
index structures within the hybrid index and reduces the write
latency by performing asynchronous updates on the sorted index.

• We implement HStore using eRPC [20] in two-sided commu-
nications and evaluate its performance. Our evaluation results
show that HStore improves the throughput of Sherman (a B+-tree
index) and Clover (a hashing index) by up to 54.5% and 38.5%
respectively under the YCSB workloads.
The source code of HStore is publicly available at: https://github.

com/KinderRiven/HStore.

2 BACKGROUND AND MOTIVATION
2.1 RDMA-based Key-Value Stores
RDMA basics. RDMA is an alternative to network protocols (e.g.,
TCP, UDP), which allows fast data transfers between the local and
remote memory with kernel bypassing [18]. RDMA hosts establish
communication using queue pairs (QPs) consisting of a send queue
and a receive queue, and post operations to the queues via different
verbs. RDMA communications provide two types of verbs, one-
sided verbs (aka memory verbs) and two-sided verbs (aka message
verbs). The one-sided verbs, including READ, WRITE, CAS (compare-
and-swap), and FAA (fetch-and-add), enable direct access to a pre-
allocated memory region on a remote server without involving the
remote CPU. Two-sided verbs work like the conventional network
protocols based on messages, where one process sends/receives
a message using the SEND/RECV verb. Data transfer based on two-
sided verbs incurs CPU cost on the remote server.

A large number of research works [6, 10, 17, 19, 20, 28, 29, 35, 37,
39, 43, 44] have studied how to leverage RDMA network protocols
to optimize key-value stores in terms of their storage requirements
and the characteristics of RDMA primitives. The architecture of
RDMA-based key-value stores can be classified into, server-centric,
client-direct, and hybrid-access designs.
Server-centric design. Someworks [17, 19, 20, 39, 43] adopt server-
centric design by replacing the communication layer (e.g., RPC) in
a key-value store with RDMA verbs. Figure 1a shows the process
of GET and PUT operations, where the client sends a request to
the server and the server returns the response after processing the
request locally. Such a design only introduces one RTT, one half
for sending the request and another half for receiving the response.
Moreover, it simplifies the implementation because it only requires
adding an RDMA-enabled communication module. However, the
server-centric design still involves the remote CPU, which limits
the scalability of the key-value stores and degrades the overall
performance when the CPU becomes the bottleneck.
Client-centric design. To bypass the CPU of the remote server,
some systems [6, 34, 44] choose client-direct architecture, enabling
the clients to directly access a pre-allocated memory region on the
server. As shown in Figure 1b, the client directly fetches/writes the
data from/to the server using one-sided verbs. Though the client-
direct approach reduces the server CPU cost, it requires multiple
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Figure 1: The architecture of different key-value stores with RDMA.
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Figure 2: The performance of different index structures. Note
that the number of memory accesses in (a) is equal to the
number of round trips when we use one-sided verbs for the
index without any optimization.

RTTs to complete one complex operation, e.g., traversing a tree-
based index on the remote server. Hence, the client-direct design
incurs long latency when handling some complex data structures.
Hybrid-access design. Many existing works [10, 28, 29, 35, 37]
leverage hybrid-access design to combine the advantages of server-
centric and client-direct architectures. Figure 1c illustrates how the
hybrid-access design works where the usage of one-sided verbs
is restricted to read-only requests (i.e., GET and SCAN). That is,
the client can directly access the data from the remote server for
read-only operations, while the server only needs to process the
requests involving writes (i.e., PUT, DELETE, and UPDATE). It
uses the client-direct approach for read-only requests and server-
centric mode for other operations. Thus, the hybrid-access design
not only harnesses the high performance of RDMA networks, but
also relaxes the burden on the server CPUs.

2.2 RDMA-friendly Index Structures
As a key component of key-value stores, the indexes can determine
the overall operation performance (i.e., the time of a key-value
operation). Prior works have proposed many efficient index struc-
tures for RDMA-based key-value stores. Here we summarize the
characteristics of different index structures, either hash-based or
sorted, and their applications in key-value stores.
Hashing index. The hashing index has been widely adopted in
RDMA-enabled key-value stores [6, 9, 17, 19, 28, 35, 39, 44], because
the hashing index can provide fast lookup services. The simple data
structure of the hash table enables the clients to directly fetch
data from the remote server using one-sided RDMA primitives (i.e.,
client-direct or hybrid-access design), which mitigates the CPU

overhead on the server. Thus, the key-value stores can achieve high
performance for single-point operations (e.g., GET, PUT, UPDATE,
DELETE) using the hashing index. However, the hashing index
does not support range queries, i.e., SCAN operations, limiting its
applications in the key-value stores.
Sorted index. To support efficient range queries, many RDMA-
based key-value stores [7, 10, 20, 29, 37, 43] leverage a sorted index
(e.g., B+-tree, skiplist), which organizes the key-value pairs in an
ordered manner. When locating a key-value pair, the sorted index
requires multiple lookups. For example, the B+-tree needs to search
from the root node to the leaf nodes, while the skiplist requires
multiple random accesses among its nodes. Note that the number
of searching operations increases with the data amount as the
tree or skiplist grows larger. Moreover, the complex structure of
sorted indexes makes it complicated to update the index during
writes. Hence, the RDMA-based key-value stores typically use two-
sided verbs (i.e., server-centric or hybrid-access design) to deal with
sorted index, which reduces the number of communication round
trips but incurs server CPU cost.

2.3 Memory Disaggregation Architecture
Conventional data centers run key-value services on a cluster of
monolithic servers that packs CPU and memory into the same phys-
ical server, suffering from low memory utilization and increased
total cost of ownership [13, 30, 34]. To improve resource utilization,
memory disaggregation decouples the computing and memory re-
sources into independent components (i.e., compute and memory
resource pools), which are connected through RDMA networks
to reduce the access latencies between the compute servers and
memory servers. Recent works explore building high-performance
key-value stores under the memory disaggregation architecture,
by placing the key-value pairs in the memory pool and designing
efficient index structures [32, 34, 43, 44]. RACE [44] proposes a
hashing index based on one-sided verbs, providing lock-free re-
mote concurrency control and efficient remote resizing; FG [43]
and Sherman [34] build a B+tree index for disaggregated memory.
Our work benefits from the disaggregated memory by storing the
values on the memory servers and focuses on designing an efficient
hybrid index for both single-point lookups and range queries.

2.4 Motivation and Challenges
We conduct some experiments with RDMA communications to
compare the indexing performance (e.g., index lookup, index insert)
of different index structures. We use two machines equipped with
two ten-core Intel Xeon Gold 5215 CPUs (2.5 GHz), 64 GB memory,



and one 100Gbps Mellanox ConnectX-5 Infiniband NIC, to be a
key-value store server and a client respectively. The server and
client are connected by a 100Gbps switch. We set the key/value
size to be 16 B/32 B respectively according to the previous study [5].
Observation #1: Using one-sided verbs to implement a sorted
index can bypass the server CPU, but introduces more RTTs
to traverse the index, thereby degrading the performance
of single-point lookups. Although some recent works [34, 43]
explore supporting a sorted index efficiently with pure one-sided
verbs (to deploy on disaggregated memory), the optimized read and
write operations still need multiple round trips. For example, 94.1%
of write operations need at least three round trips in Sherman [34],
a state-of-the-art distributed B+-tree optimized for writes. For read
operations, both FG [43] and Sherman require caching index locally
on the client to avoid traversing the tree nodes, but some index
lookup operations incur read retries (even experience nine times).

We compare the performance of different index structures by
measuring the number of memory accesses on a key-value server,
which equals the number of round trips when we adopt one-sided
verbs for the index without any optimization (e.g., combining depen-
dent RDMA commands). We test three common index structures
(i.e., B+-tree [2], chained hash table, and skiplist [1]) respectively,
by accessing each key one by one using a single lookup thread. All
indexes reside in the memory. Figure 2a shows the number of mem-
ory accesses of the sorted index and hashing index under different
data amounts (1 to 100million key-value pairs). With a larger num-
ber of key-value pairs, the number of memory accesses of B+-tree
and skiplist, increases from 3 to 10, because B+-tree expands itself
by adding more nodes while skiplist splits itself into more lists. For
the hash table, the number of memory accesses remains relatively
stable (around one) with a slight increase as more buckets are ac-
cessed in case of hash conflicts. Our experiment results confirm
the previous analysis that using one-sided verbs for sorted index
requires several round trips for one single-key search. Thus, the
sorted index based on one-sided verbs increases the latencies of
single-point lookups though it avoids involving the server CPU.
Observation #2: The single-key lookup performance of sorted
index based on two-sided verbs drops down a lot with more
clients, as the server CPU can become the bottleneck. We
evaluate the indexing latency (time of index lookup over RDMA) of
different indexes under different numbers of client threads. Based on
observation #1, we implement B+-tree and skiplist using eRPC [20]
(an RPC library based on two-sided verbs), and access the hash table
via one-sided verbs. Here we load 100million keys to each index
structure, and start a different number of client threads issuing
GET requests over all keys uniformly. Each client thread issues
20million GET requests to the server. We use four RPC threads and
four processing threads on the server to process the client requests,
by enabling hyper-threading on the four CPU cores (i.e., each phys-
ical core runs an RPC thread and a processing thread). Figure 2b
illustrates the indexing latency of different index structures under
various numbers of clients. Here, the indexing latency includes
the RDMA transfer time and the key lookup time. For the sorted
index (i.e., B+-tree, skiplist), the indexing latency increases with the
number of clients as the server CPU fails to handle all the client re-
quests in time. For the hashing index, the indexing latency remains
relatively stable across different numbers of clients because there
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Figure 3: An intuitive approach to build key-value service
with hybrid index under the memory disaggregation archi-
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is no CPU cost through one-sided verbs. The indexing latency of
the sorted index is almost three times that of the hash table when
there are 32 client threads issuing requests to the server. Therefore,
the hashing index provides higher performance than the sorted
index, which motivates our idea of combining a hashing index and
a sorted index in RDMA-based key-value stores.

However, it is non-trivial to realize the idea of a hybrid index
efficiently in RDMA-based key-value stores, especially under the
memory disaggregation architecture. The first challenge is to pre-
serve strong consistency between the hashing index, the sorted
index, and the key-value items. As the memory server in the mem-
ory pool does not have much computing power, it needs to reduce
the synchronization and serialization overhead of different index
structures within a hybrid index. Second, though the read oper-
ations can benefit from the hybrid index, the write performance
drops down because the system needs to maintain two index struc-
tures and update both of them for write operations. How to mitigate
the overhead of keeping and updating the hybrid index remains
an open problem. Last but not least, when a failure occurs (e.g.,
one index server crashes), it is challenging to support key-value
services efficiently and achieve fast index recovery based on the
remaining index structures.

3 DESIGN OF HSTORE
In this section, we first introduce an intuitive approach of a hybrid
index which is hard to efficiently maintain strong consistency be-
tween different index structures. We then present our hybrid index
scheme under the memory disaggregation architecture and build
HStore, an RDMA-enabled key-value store based on a hybrid index.

3.1 An Intuitive Approach
One natural approach to leverage a hybrid index in RDMA-based
key-value stores under the memory disaggregation architecture is
using one-sided verbs to access both hashing index and sorted index
as the memory servers have limited computing resources. Figure 3
shows the intuitive design of building a key-value store based on
a hybrid index which consists of a hash table and a skiplist. In
such a design, the hybrid index and the key-value pairs are located
on memory servers where the compute servers access them via
the one-sided verbs. To achieve high read performance, the client
on the compute server can access the hash table or the skiplist
on the memory servers based on the type of read operations via
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Figure 4: An example that makes the two index structures
within a hybrid index inconsistent. Here the server 𝑆1 and 𝑆2
hold the hash table and skiplist for the key 𝑘0 respectively.

READ. That is, the client can query the hash table directly for single-
point lookups while leveraging the skiplist for range queries. For
write operations, the client needs to update both the hash table and
skiplist using the WRITE verb.

Accessing the index on the memory servers via one-sided verbs
seems to maximize the system performance, but poses unique chal-
lenges to maintain consistency between the two index structures
within a hybrid index. The key problem is how to update the hash-
ing index and sorted index in an atomic and efficient approach. As
network interruptions and server crashes are commonplace in a
distributed environment, it is possible that one index is updated
successfully while another fails to update. The two index structures
within a hybrid index become inconsistent, such that a key-value
pair is indexed by only one index structure or none of them.

Figure 4 shows an example that makes the two index structures
within a hybrid index inconsistent. Assume that the hash table and
the skiplist of a key-value pair <𝑘0, 𝑣0> are located on server 𝑆1
and 𝑆2 respectively, and there are two clients 𝐶1 and 𝐶2 updating
the same key-value pair <𝑘0, 𝑣0> where 𝐶1 writes <𝑘0, 𝑣1> and 𝐶2

writes <𝑘0, 𝑣2>. When a client needs to update the value of 𝑘0, it
requires updating the index entries of 𝑘0 on the server 𝑆1 and 𝑆2
by issuing two WRITE requests. On the server 𝑆1, the index entry is
updated to <𝑘0, 𝑣2> as the request from the client 𝐶2 comes after
the client𝐶1’s. However, for the index on the server 𝑆2, it is updated
to <𝑘0, 𝑣1> because the 𝐶2’s request arrives earlier than that of the
client 𝐶1. Therefore, the index structures on the server 𝑆1 and 𝑆2
become inconsistent due to the incorrect concurrent updates.

The main reason leading to the inconsistent hybrid index is that
the client performs update operations on two servers independently
via one-sided verbs, making atomic update and serialization of the
hybrid index hard to realize. One solution to this inconsistency
problem is to employ distributed transactions [4]. It requires check-
ing the transaction table during writes, such that the client can
judge the validity of an update operation based on the transaction
table, and then complete or roll back the whole operation. This
complicated method inevitably introduces additional overhead to
the write process, thereby degrading the write performance [42].
Therefore, we need to adopt a lightweight mechanism to efficiently
manage the hybrid index in an RDMA-based key-value store.

3.2 Hybrid Index Scheme
Overview. Figure 5 plots the architecture of HStore where the
hybrid index resides on two monolithic servers and the values are
stored in the memory pool consisting of multiple memory servers.
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Figure 5: The hybrid index scheme deployed on two mono-
lithic servers in HStore.

As updating the hybrid index on the memory servers increases the
complexity of index synchronization, HStore builds a hybrid in-
dex atop the monolithic servers with both computing and memory
resources. We deploy the hashing index and sorted index on two
servers separately in order to tolerate single-server failures and re-
duce the recovery time. When one index server fails, the remained
server can continue to provide partial key-value services until the
failed index gets reconstructed. We refer to the server holding the
hashing index as Hash Table Server (HTS), and the server contain-
ing the skiplist as SkipList Server (SLS). To achieve low latency for
read operations, HStore performs single-key lookups by accessing
the hash table on the HTS, and answers range queries based on
the skiplist on the SLS. Compared to updating the hybrid index
with only one-sided verbs, HStore simplifies the synchronization
between the HTS and SLS through two-sided verbs. If there are
more index servers (more than two servers) to hold a bigger data
structure, we can use sharding to spread the keys across multiple
hash tables where each hash table has a corresponding sorted index.
That is, the current hybrid index in HStore is a unit to preserve
strong consistency between the hashing index and sorted index.
Choices of RDMA verbs. HStore uses different RDMA verbs for
different read operations to achieve low latency. For single-key
lookups, HStore allows the client to directly access the hash table
on the HTS using one-sided verbs, which bypasses the CPU. For
range queries, the client sends the request to the SLS maintaining a
sorted index via two-sided verbs, which can be completed in one
round trip. Upon receiving SCAN requests, the SLS searches its
local skiplist and returns the results to the client. Using two-sided
verbs to handle SCAN requests reduces the number of RTTs, but
limits the scalability as it involves the server CPU (as shown in
Figure 2). We argue that the advantages of this design outweigh
using one-sided verbs to access the sorted index, because the latter
requires redesigning the index structure algorithm and handling the
conflict of different clients’ requests [34]. Moreover, as the overhead
of SCAN operations mainly depends on accessing the values rather
than the index, the performance gain of using one-sided verbs
for sorted index may not be much higher than that of using two-
sided verbs (based on the evaluation results in Section 5.2). HStore
leverages two-sided verbs to deal with write requests, because the
client requires getting a response from the HTS and the HTS needs
to receive the response from the SLS. In summary, HStore uses
one-sided verbs for GET and two-sided verbs for other operations.



Index updating. For write requests (PUT, DELETE, UPDATE op-
erations), HStore updates both the hashing index and the sorted
index to keep them consistent. Compared to updating a hashing
index, updating a sorted index is a much more costly operation as
it involves additional operations to maintain the order of the keys.
For example, inserting one key into a B+tree index may trigger
node splitting and merging while updating a skiplist may require
list splitting. Thus, HStore performs asynchronous updates to the
sorted index like HiKV [40] to keep the write latency low, while
synchronously updating the hash table for single-key lookups.

In case of server failures, HStore stores the updates in an append-
only log before applying the updates to the index structures. Each
log entry consists of a key, a value address, and a mark named
"isApplied" to indicate whether this key has been inserted into
the local index structure. When receiving a write request from a
client, the HTS first records the update in its local log and sends the
update to the SLS; the SLS stores the update in its log, replies to the
HTS, and asynchronously applies the update to the skiplist; after
receiving a successful response from the SLS, the HTS updates its
hash table and returns to the client. Note that the update requests
of the same key are processed by the same thread, such that we
do not need to serialize the concurrent updates. We elaborate on
the implementation of index updating in Section 4.2. As the sorted
index is updated asynchronously, the SLS updates the index based
on its log before answering SCAN for strong consistency. In other
words, HStore supports serializability in that the written items can
always be accessed during single-point reads and range queries.
Consistency guarantee. HStore maintains strong consistency
from two perspectives: (i) consistent index structures between HTS
and SLS, and (ii) consistent index with the key-value data. For the
first consistency issue, our approach to update the index based on
the log can keep the sorted index on SLS consistent with the hash
table on HTS. A complete index updating means that the update
has been recorded in the logs on both the HTS and the SLS, and the
hash table gets updated. As the logs on the HTS and the SLS are
the same, the sorted index is consistent with the hash table when
the sorted index finishes applying the updates asynchronously. For
the second consistency point, it means that the data can be indexed
during reads after the data is successfully written to the key-value
store. That is, if a write fails, the invalid key-value pair should not be
indexed during the reads. To ensure the index structures consistent
with the data stored, HStore uses sequential writes to store the
value and update the index. When performing a write request, the
client first stores the key-value pair to the memory pool and gets
the value address, then connects to the HTS for index updating. If
any step fails during the write process, the write operation fails and
the client can restart the write operation. Note that when updating
an existing key-value pair, HStore returns the old value address
to the client, such that the client can release the old value space
asynchronously. If some errors occur during the process of space
release, HStore can subsequently scan out the orphaned key-value
data to reclaim the memory space.
Failure handling. HStore starts to reconstruct the failed index
when detecting some index server failures. We assume that there is
a centralized manager like ZooKeeper to monitor the health status
of the HTS and SLS [16]. During index recovery, HStore blocks
the write operations and serves read requests using the remained

index. When the HTS fails, the hash table can be recovered from
SLS by scanning the skiplist; it reduces the recovery time as the
whole process does not need to retrieve the key-value pairs in the
memory pool. If the SLS fails, the onlymethod to recover the skiplist
is to scan all key-value pairs across the memory servers, because
the HTS only stores the hash value of the key field instead of the
complete key (details are described in Section 4.1). Specifically,
the recovery of the skiplist involves retrieving all key-value pairs’
addresses from the HTS and accessing the complete key at each
address. Thus, it is time-consuming to reconstruct a skiplist as the
recovery needs to scan the entire key space in the memory pool.

4 IMPLEMENTATION
We implement HStore in C++, which realizes two-sided commu-
nications based on the eRPC library [20]. We first introduce the
threading model and data structures of the hybrid index used in
HStore. We then explain how HStore provides key-value services
(i.e., GET, PUT, and SCAN operations) with the hybrid index.

4.1 Hybrid Index
Threading model. HStore employs multi-threading model for
writes and range queries which involve the server CPU. Each index
server starts several RPC threads, which are responsible to receive
and handle RPC requests, and worker threads, which perform index
updates and key lookups. Figure 6 depicts the threading model of
hybrid index scheme. During writes, the worker threads on the
HTS update the hash table while the worker threads on the SLS
apply updates to the skiplist. For range queries, the worker threads
on the SLS look up the keys among the sorted lists. We explain the
details of processing the key-value operations by the RPC threads
and worker threads in Section 4.2.
Data structures. HStore currently adopts a chained hash table
and a basic skiplist to constitute a hybrid index. Note that the hash
table and the skiplist can be replaced with other optimized hash
table and sorted index (e.g., tree-backed) respectively. Each chain
consists of multiple buckets, each of which is of 64 B. A bucket
contains seven hash slots, and a pointer of 8 B to link the next
bucket. Each hash slot records the information on a key-value pair,
consisting of the hash value of the key (1 B), the length of the key-
value item (1 B), and the value address (6 B). For single-key lookups,
the client first computes the bucket address based on the key locally,
reads a bucket using the READ verb, and then searches for the key
within the bucket. The client needs to check each slot by comparing
the signature (i.e., the hash value of the key) and the exact key. If
the comparison succeeds, the value is returned. If no valid slot
is matched and the next pointer is not empty, the next bucket is
queried based on the next pointer. When a bucket is full during
writes (e.g., a hash collision occurs), the server links a new bucket
after the last bucket using the next pointer. To avoid resizing, we
allocate more buckets than required by consuming a little more
memory space. For the skiplist, HStore divides the whole list into
several partitions based on the hash values of the keys, such that
each partition can be searched concurrently by multiple threads to
reduce the latency of range queries.



Figure 6: The threading model of hybrid index in HStore.

4.2 Key-value Services
Write operations. HStore uses two-sided verbs to perform index
updating and data storing. For PUT and UPDATE operations, the
client first stores values in the memory pool to get the value ad-
dresses before updating the hybrid index. Then the client sends
requests for updating the index to the RPC threads on the HTS.
The RPC threads on the HTS append the updates to different logs
based on the hash values of the keys. The worker threads then
send the updates to the SLS using two-sided verbs, and wait for
the responses from the SLS. To improve the write throughput, the
worker threads perform log synchronization between the HTS and
the SLS in a batch. On the SLS, the RPC threads append the updates
to the log and send successful responses to the HTS, while the
worker threads asynchronously update the skiplist. As the skiplist
is divided into several partitions, different partitions can be updated
by multiple worker threads concurrently. Upon receiving the suc-
cessful responses from the SLS, the worker threads on the HTS
apply the updates to the hash table and return success to the client.
The updates of the same key are processed by the same thread
due to the above processing approach: 1) the RPC thread writes a
request to a log based on the hash value of the key; 2) the write
requests with the same key are placed in the same log, which is
processed by the same worker thread. To handle concurrent writes
and reads, the HTS updates the hash table by a compare-and-swap
operation with the CPU, which deals with each update as an atomic
operation. If any step fails during a write, the incomplete write
operation is considered as a write failure; the client can restart the
write process if it does not receive a successful response from the
HTS after a period of time.
GET. HStore handles GET requests using one-sided verbs, totally
bypassing the server CPU. It leverages the hash table on the HTS
for single-key lookups. To read a key-value pair, the client directly
accesses the hash table using one-sided verbs to obtain the value
address. Then, the client retrieves the value from the memory server
according to the value address. The whole process avoids incurring
CPU cost on both the index server and the memory server.
SCAN.HStore provides efficient range queries based on the skiplist.
The client submits SCAN requests via eRPC to the SLS, where the
worker threads search among the skiplist partitions concurrently to
return the results to the client. Note that the worker threads make
sure that no index updates remain before processing the query. That
is, if there are index updates left, the worker threads will first apply
the updates to the skiplist and then answer the SCAN request.

5 EVALUATION
5.1 Experiment Setup
We evaluate the performance of HStore on a local cluster. Our local
cluster consists of four servers, each of which runs CentOS Linux
release 7.6.1810 with 4.18.8 kernel and is equipped with two ten-
core Intel Xeon Gold 5215 CPUs (2.5 GHz), 64 GB memory and one
100Gbps Mellanox ConnectX-5 Infiniband NIC. All machines are
connected via a 100Gbps switch. We use one machine for value
storage as a memory server, deploy the hybrid index on two ma-
chines, and start multiple client threads on one machine to send
requests. Each index server runs four RPC threads and four worker
threads on the four CPU cores by enabling hyper-threading, where
each physical core runs an RPC thread and a worker thread. Each
client thread establishes a QP pair with the HTS. We use LevelDB’s
db_bench [11] and YCSB [8] benchmarks to evaluate the perfor-
mance of HStore. The clients use closed-loop tests here. We run
five times for each experiment and plot the average results.

We compare HStore to Sherman [34], a key-value store based
on the B+tree index, and Clover [32], a key-value store using the
hashing index. Both of them use one-sided verbs for index lookups
under the memory disaggregation architecture. As Sherman and
Clover use a single index, we use one server to store their index as
an index server. For other configurations, we use the same settings
as HStore for Sherman and Clover. We also evaluate the write
performance of HStore (sync). HStore makes sure that the logs
on the HTS and SLS are synchronized before the write operation
is completed and asynchronously updates the skiplist on the SLS,
while HStore (sync) synchronously updates both the hash table on
the HTS and the skiplist on the SLS during writes.

5.2 Performance of Basic Operations
To evaluate the performance of basic operations (i.e., PUT, GET,
SCAN) in HStore, we first load 100 million (100M) key-value pairs
with a key size of 16 B and a value size of 32 B. We then issue 20M
PUT requests, 20M GET requests, and 1M SCAN requests using
db_bench. We start four RPC threads and four worker threads on
each index server. We collect the throughput and latency of HStore,
HStore (sync), Sherman, and Clover under different numbers of
client threads ranging from 4 to 32. Figures 7 and 8 plot the through-
put and latency of PUT, GET, and SCAN operations.

For write performance, HStore achieves similar performance to
Sherman and Clover under eight or fewer client threads. When
the number of client threads increases to 16 or higher, the write
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Figure 7: The throughput of basic operations.
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Figure 8: The latency of basic operations.

throughput of HStore is about 1.4 times Clover’s because Clover
needs to handle write conflicts at the remote server with more RTTs.
Compared to Sherman, HStore reduces the throughput by 18.7%
and 42.9% under 16 and 32 client threads respectively. As Sherman
implements multiple specific optimizations for the write operations
(e.g., accelerating lock operations), it is reasonable that Sherman
achieves higher write performance than HStore which requires up-
dating two index structures. HStore achieves 4.0-22.9% higher write
throughput than HStore (sync) under different numbers of client
threads, because asynchronous skiplist updates on the SLS reduce
the waiting time during writes. The evaluation results demonstrate
the effectiveness of asynchronous index updates in HStore.

For GET operations, HStore achieves the best performance among
Sherman and Clover. When there are eight or fewer client threads,
HStore achieves similar throughput and latency to Clover because
both of HStore and Clover leverage the hash table for single-key
lookups. HStore achieves higher performance for GET operations
than Clover when there are more client threads, increasing the
throughput by 16.6% and 18.1% under 16 and 32 clients respectively.
The reason is that HStore handles hash conflicts by allocating multi-
ple slots such that it can retrieve one bucket within one RTT, while
Clover may need multiple RTTs to access a target chained list. Com-
pared to Sherman, HStore increases the throughput by 71.3-98.6%
and reduces the latency by 41.6-49.6% under different numbers of
client threads. Sherman needs to recursively search from the root
node to the leaf nodes when performing read queries. When the

depth of the tree is deeper, it needs more RTTs to complete a single-
point query. Our evaluation results show that it requires at least
two RTTs to complete a single-point query. In contrast, HStore
only needs one RTT to obtain the requested index entry from a
bucket in the hashing index. The results show that HStore benefits
from the hashing index for single-key lookups. Note that when the
number of client threads increases from 4 to 32, the GET latencies
of all three systems do not significantly increase, indicating that the
above throughputs are not the maximum. As all three systems use
one-sided verbs for index queries, they can achieve good system
scalability when the server computing resources are insufficient. In
other words, if the number of clients continues to increase, the total
throughput of each system will increase. The maximum throughput
is related to many factors, such as the number of QPs established
between the clients and servers, network bandwidth, and the pro-
cessing capacity of the RNIC [20]. The primary goal of our work
is to leverage a hybrid index to reduce the RTT overhead during
index access, thereby achieving a low indexing latency. Thus, we
do not explore the maximum throughput of the systems here.

As Clover does not support range queries, we only plot the
SCAN performance of HStore and Sherman. The number of keys
covered by each scan operation in our evaluation is 100. HStore
achieves a similar SCAN performance to Sherman. There is nearly
no performance difference, because the SCAN latency depends on
the time of data access rather than the indexing time (shown in
Section 5.3).



Figure 9: Performance breakdown of basic operations.

5.3 Microbenchmarks
We conduct microbenchmarks for HStore using db_bench. We mea-
sure the time of the following phases during a request: (i) index rpc,
the communication time between a client and an index server based
on eRPC; (ii) queue wait, waiting in a log queue to be processed
by a worker thread (we do not count the waiting time in the RPC
queue as it is quite short due to the low concurrency); (iii) index
operation, performing update or search on an index; (iv) log sync,
log synchronization between the HTS and SLS during writes; and
(vi) key-value access, writing/reading values to/from data servers.

Figure 9 shows the performance breakdown of basic operations
with 32 clients. For PUT operation, queue wait accounts for the
highest proportion, about 50-66% of the whole latency. As HStore
handles all write requests on the index server, the server CPU
becomes a bottleneck when there are too many requests and a
number of write requests wait in the queue to process. The second
highest time-consuming operation is log sync, which takes 24% of
the total write latency. For the GET operation, HStore completes the
index lookup through one RTT and the key-value access through
one RTT. Therefore, the proportion of index operation and key-
value access is basically the same.When handling a SCANoperation,
HStore spends about 96% of the time in key-value access while the
remaining time is used for index lookups. The proportion of time
depends on the number of elements covered by the range query. For
a SCAN operation, HStore uses two-sided verbs to obtain the value
addresses of all required keys within an RTT. As HStore stores the
key-value pairs in the remote memory pool and needs to access
them through one-sided verbs, fetching each value takes one RTT.
For example, for a SCAN operation with the range of 100, accessing
the index requires one RTT, and fetching the values needs 100 RTTs.

5.4 Performance under YCSB Workloads
We evaluate HStore, Sherman, and Clover under YCSB workloads A-
E [8]. We first load 100 M key-value pairs with the default key-value
size where the key size is about 20 B and the value size is around
200 B. We then run each workload with 20 M requests, which are
issued by 16 clients. HStore performs the update operation through
the PUT method, and performs the read-modify-write operation
by the combination of GET and PUT operations.

Figure 10 depicts the performance of HStore, HStore (sync), Sher-
man, and Clover under the YCSB workloads. Compared to Sher-
man and Clover, HStore improves the throughput by 37.3-54.5%

(a) Throughput

(b) Latency

Figure 10: Performance under the YCSB workloads: A (50%
reads, 50% updates), B (95% reads, 5% updates), C (100% reads),
D (95% reads for latest keys, 5% inserts), E (95% range queries,
5% inserts), and F (50% reads, 50% read-modify-writes). We
use Zipfian distribution with the default skewness 0.99.

and 14.2-38.5% respectively under workloads A-D and F. HStore
achieves better performance than Sherman and Clover, because
it incurs fewer RTTs by using the hybrid index. For workload E
with 95% range queries and 5% inserts, the throughput of HStore
is a little lower than that of Sherman as HStore using two-sided
verbs has worse scalability. Compared to HStore (sync), HStore
achieves higher performance under write-intensive workloads (i.e.,
load phase, workloads A and F) and similar performance under
other workloads. The results show that the asynchronous skiplist
updates improve the write performance without degrading the scan
performance. In summary, compared with the key-value stores
based on a single index, HStore achieves better performance under
workloads containing single-key lookups and similar performance
to the sorted index under workloads involving range queries.

5.5 Recovery and Degraded Performance
We measure the recovery time of HStore in case of HTS and SLS
failures, i.e., the latency of rebuilding a hash table or a skiplist.
Figure 11a shows the recovery time of the HTS, SLS, and both
of them. When the number of keys increases from 1M to 100M,
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Figure 11: Recovery performance under index server failures.

it takes 0.98-105 s, 1.56-180 s, and 2.77-276 s to recover the HTS,
the SLS, and both of them respectively. The repair time of the
SLS is much longer, almost doubling the HTS’ recovery time. The
reason includes: 1) reconstructing a hash table takes less CPU cost
than recovering a skiplist; 2) HStore can rebuild the hash table
by scanning the skiplist, but needs to scan the key-value pairs in
the memory pool to reconstruct the skiplist. Thus, the recovery
of the HTS is faster than that of the SLS. HStore prioritizes the
failure recovery process to avoid blocking the key-value services
(e.g., write requests and range queries) too long.

We also evaluate the degraded performance of HStore when
the HTS or SLS fails. HStore can serve single-point requests and
range queries under the HTS failure, but can only process the GET
operations under the SLS failure.When theHTS fails, the processing
of a SCAN request is the same as in the normal case. Thus, we only
show the performance of GET operations under different index
server failures. Figures 11b and 11c show the throughput and latency
of GET operation under the HTS and SLS failure, respectively. The
SLS failure does not have any impact on the read performance,
while the HTS failure degrades the read performance a lot because
HStore needs to access the skiplist on the SLS. When the number of
client threads varies from 4 to 32, the GET latency under the HTS
failure increases that under the SLS failure by 7.90-85.03%, while
the GET throughput under the HTS failure reduces that under the
SLS failure by 8.16-45.99%.

6 RELATEDWORK
Single index on RDMA. A large body of research on RDMA-
based key-value stores in the literature has explored single index
structures, either hash-based or sorted index. These works are
orthogonal to HStore, i.e., HStore can utilize two different types of
indexes (i.e., one hashing index and one sorted index) to combine
their benefits in various key-value operations.

Many RDMA-enabled key-value stores leverage hashing index
to achieve fast lookup services, and further optimize the usage of
hash tables on RDMA [6, 9, 17, 19, 23, 28, 35, 39, 44]. Pilaf [28] uses
a 𝑛-way cuckoo hashing algorithm to compute 𝑛 different hash
buckets for every key by 𝑛 orthogonal hash functions, where 𝑛 = 3
achieves the best memory efficiency. FaRM [9] proposes chained

associative hopscotch hashing to achieve high space efficiency and
a small number of RDMA reads for lookups. HydraDB [35] proposes
a cache-friendly compact hash table based on a consistent hashing
algorithm [21]. DrTM [39] presents cluster hashing which is similar
to chained hashing with associativity. RACE [44] is a one-sided
RDMA-conscious extendible hashing index that supports lock-free
remote concurrency control and efficient remote resizing.

Some key-value stores adopt sorted indexes with RDMA to sup-
port range queries efficiently [7, 10, 20, 29, 37, 43]. The updated
version of FaRM [10] that supports distributed transactions lever-
ages B-Tree for range queries. Cell [29] proposes a hierarchical
B-tree where a global tree consists of local trees. DrTM-R [7]
provides an ordered store in the form of a B+-tree in DBX [36].
Masstree+eRPC [20] extends Masstree [27], an in-memory ordered
key-value store, with eRPC (an RDMA-based RPC library). Ziegler
et al. [43] study different design alternatives for tree-based index
structures on RDMA. XStore [37] maintains a B+-tree index at the
server, which is implemented by extending the B+-tree index [36]
with DrTM+H [38] (a hybrid RDMA framework). Sherman [34]
is a write-optimized distributed B+-tree using a local cache, and
local and global lock tables based on one-sided verbs, to reduce the
number of round trips during writes. Tebis [33] ships the B+-tree
index on the primary server to the backup servers over RDMA in
LSM-based key-value stores.
Hybrid index in key-value stores. Existing works on hybrid
index [3, 40]mainly consider the usage on one singlemachine, while
HStore targets on distributed index based on RDMA. HiKV [40]
proposes a hybrid index consisting of a hashing index [25] and a
B+-tree to enable fast index searching and range queries in DRAM
and NVM. FloDB [3] presents a hierarchical memory design that is
indexed by a small high-performance concurrent hash table and a
larger concurrent skiplist [15]. NAM-DB [41] maps a value of the
secondary attribute to a primary key using a hashing index and a
B+-tree, but it does not consider the consistency between the two
different indexes and the efficient update of the indexes.
Memory disaggregation. The architecture of memory disaggrega-
tion separates computing resources from memory resources phys-
ically to allocate different resources on demand, thereby solving
the problem of low memory utilization in data centers [13, 30].
Recently, many works [12, 14, 22, 24, 31, 32] study the deployment



of memory disaggregation in practice from the perspectives of re-
source management, performance optimization, data reliability, and
hardware usage. Clio [14] adopts a combination of software and
hardware to improve the performance of disaggregated memory.
pDPM [32] explores the design of disaggregated persistent memory
system and builds Clover, a key-value store based on a hashing
index. Hydra [22] and FUSEE [31] revisit the issue of data reliability
in disaggregated memory. DirectCXL [12] and Pond [24] utilize
CXL to implement a high-performance memory pool. HStore stores
KV data in the memory pool under the memory disaggregation ar-
chitecture, while placing the hybrid index on the monolithic nodes
to improve the indexing performance.

7 CONCLUSION
This paper presents HStore which leverages a hybrid index consist-
ing of a hash table and a sorted index in an RDMA-based key-value
store under the memory disaggregation architecture. HStore com-
bines the benefit of hashing index and sorted index and stores the
key-value pairs in the memory pool, to achieve efficient single-
key lookups and range queries. To minimize the index lookup and
update overhead, we dedicatedly use different RDMA primitives
for read and write operations, and apply asynchronous updates
to the sorted index while maintaining strong consistency among
different index structures. Our evaluation results show that HStore
efficiently manages the hybrid index with strong consistency and
provides rich key-value services with low latency.
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