CREST: High-Performance Contention Resolution for
Disaggregated Transactions

Mi Zhang
State Key Lab of Processors,
Institute of Computing
Technology, Chinese
Academy of Sciences
Beijing, China

Qihan Kang
State Key Lab of Processors,
Institute of Computing
Technology, Chinese
Academy of Sciences,
University of Chinese
Academy of Sciences
Beijing, China

Abstract

Distributed transaction systems can leverage memory disag-
gregation for efficient resource scaling, yet they experience
significant performance degradation under high-contention
workloads. We present CREST, a disaggregated transaction
system that efficiently manages high-contention transaction
workloads in disaggregated memory architectures via three
key techniques: (i) cell-level concurrency control, which
achieves more fine-grained transaction concurrency than
existing record-level approaches and reduces remote access
latencies using a metadata-aggregated record structure; (ii)
localized execution, which allows compute nodes to oper-
ate on local uncommitted results to reduce blocking time;
and (iii) parallel commits, which parallelize commit oper-
ations under transaction dependencies. Evaluation shows
that CREST achieves a throughput gain of up to 1.92X over
state-of-the-art systems under high-contention workloads.

CCS Concepts: « Computer systems organization — Ar-
chitectures.

Keywords: Distributed transactions, disaggregated memory,
RDMA

ACM Reference Format:

Qihan Kang, Mi Zhang, Patrick P. C. Lee, and Yongkang Hu. 2026.
CREST: High-Performance Contention Resolution for Disaggre-
gated Transactions. In Proceedings of the 31st ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS °26), March 22-26, 2026,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3779212.3790148

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °26, Pittsburgh, PA, USA

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2359-9/2026/03
https://doi.org/10.1145/3779212.3790148

Department of Computer
Science and Engineering,
The Chinese University of

Patrick P. C. Lee Yongkang Hu
State Key Lab of Processors,
Institute of Computing
Technology, Chinese
Academy of Sciences,
University of Chinese
Academy of Sciences

Beijing, China

Hong Kong
Hong Kong, China

1 Introduction

Distributed transaction systems [16] ensure ACID proper-
ties in relational data processing across multiple servers,
and are critical for applications requiring strong consistency
and fault tolerance (e.g., e-commerce and financial services
[27, 54, 64]). However, traditional distributed transaction sys-
tems build on monolithic servers, where compute resources
(e.g., CPU) and memory resources (e.g., DRAM and persis-
tent memory) are tightly coupled. Such rigid coupling limits
resource scalability and flexibility [29, 40, 46].

Memory disaggregation [19, 48, 52, 55] enables efficient
resource scaling by decoupling compute and memory re-
sources and interconnecting them with high-speed networks,
such as Remote Direct Memory Access (RDMA). It avoids
resource over-provisioning, reduces expensive data migra-
tion [24], and alleviates single-node bottlenecks [60], thereby
improving resource utilization and performance [47]. Recent
studies [32, 33, 67, 68] demonstrate significant performance
gains when applying memory disaggregation to distributed
transaction processing under typical workloads.

However, existing studies do not specifically address high-
contention workloads, which are actually prevalent in real-
world applications. Contention occurs when concurrent
transactions access the same data item in conflicting modes
(e.g., read-write or write-write conflicts). Frequently accessed
data items further exacerbate such contention. Our analysis
(§2.3) reveals that state-of-the-art disaggregated memory
systems, FORD [68] and Motor [67], adopt record-level con-
currency control and experience frequent transaction aborts
in high-contention workloads, even though the concurrent
transactions may access different column fields of the same
record. Also, both FORD and Motor acquire locks for the
whole transaction to ensure serializability, yet this increases
the blocking time of other concurrent transactions.

We present CREST, a disaggregated transaction system
designed for high-performance contention resolution of
transactions in disaggregated memory architectures. CREST
builds on three key design techniques:

o Cell-level concurrency control: CREST applies fine-grained
concurrency control at the granularity of cells (i.e., in-

https://doi.org/10.1145/3779212.3790148
https://doi.org/10.1145/3779212.3790148
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779212.3790148

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

dividual column fields of a record). This design allows
transactions to simultaneously access different fields of
the same record, thereby improving concurrency. Sim-
ilar approaches can be applied to storage systems that
already adopt sub-record units for concurrency control
(e.g., BigTable [5]). However, cell-level operations aggra-
vate metadata access overhead, so CREST introduces a
specialized record structure that aggregates metadata to
reduce the number of RDMA calls.

o Localized execution: CREST allows transactions to operate
on local uncommitted execution results in the same com-
pute node, so as to reduce the blocking time of concurrent
transactions. It employs pipeline execution to parallelize
transaction executions for high performance, while ensur-
ing serializability.

e Parallel commits: CREST parallelizes transaction commits
to remote memory using dependency-tracking redo-logging
and last-writer-wins mechanisms, so as to ensure serializ-
ability under transaction dependency constraints.

We show that CREST maintains ACID guarantees and
incurs limited space and RDMA communication overhead.
We implement CREST and evaluate it against FORD [68] and
Motor [67] under various transaction workloads. CREST
achieves a throughput gain of up to 1.92x under high-
contention workloads. Our CREST prototype is open-sourced
at: https://github.com/adslabcuhk/crest.

2 Background and Motivation
2.1 Disaggregated Memory Architectures

Disaggregated memory architectures decouple compute and
memory resources into two types of independent entities:
(i) compute nodes, which have powerful CPUs for executing
application logic but limited local memory for metadata stor-
age or caching, and (ii) memory nodes, which have abundant
memory space but limited computing power only enough
for basic tasks (e.g., network connectivity and memory man-
agement) [38, 46, 48, 57, 70]. We refer to the collection of
compute nodes as a compute pool and that of memory nodes
as a memory pool. In this work, we assume that both pools
are interconnected via high-speed network fabrics based on
RDMA, which offers low-latency remote access (e.g., 3-5 jis)
and high bandwidth (e.g., about 100 Gbps [14]).

We note that one-sided RDMA primitives (e.g., READ, WRITE,
CAS (compare-and-swap)) allow compute nodes to directly
access data in memory nodes without involving the remote
CPU processing of memory nodes. This property is partic-
ularly well-suited for disaggregated memory architectures,
where memory nodes often have limited processing capabili-
ties. One-sided RDMA primitives have been extensively stud-
ied in academic research [32, 33, 67, 68] (see §9 for details)
and are reportedly supported for transactions in production
disaggregated memory architectures (e.g., ByteDance’s veDB
[49], Alibaba’s PolarDB-MP [63], and Huawei’s GaussDB

Qihan Kang, Mi Zhang, Patrick P. C. Lee, and Yongkang Hu

- Coordinators ------- ' - In-Memory Store ----- '
| 1 !
v ||| One-Sided | : '
i ’] Index Structure | !
H 1
: 1 ! ;
(R H : :
H DB Records H
Txn Protocol !
Metadata (gcc, MVOG0) RDMA Network | (single /mut version) E
. H
Compute Pool Memory Pool
Txn i 8 Execute Txn Logic

Validati

CN >
1 1
Lock A, B
: /\

:‘ReadA,B,C‘ ‘Readc‘ ‘WriteA,B‘

'READ A,B,C |
! UPDATE A=A+C!
| UPDATE B=B -C:

Txn Logic 1

MN

! Execute Phase Commit Phase

Figure 1. Example of transaction processing under disaggregated
memory architectures (CN: compute node; MN: memory node).

[28]). Motivated by the potential of one-sided RDMA primi-
tives, this work examines the design and feasibility of achiev-
ing high-performance contention resolution for disaggre-
gated transactions based on one-sided RDMA primitives.

2.2 Disaggregated Transaction Processing

Figure 1 depicts the architecture of a disaggregated transac-
tion system based on memory disaggregation. In the mem-
ory pool, database records are stored in either single-version
[33, 68] or multi-version [67] formats and indexed using opti-
mized data structures [57, 70]. To mitigate the network over-
head due to RDMA’s one-sided operations, state-of-the-art
systems adopt specific storage layouts. For example, Motor

[67] employs a consecutive version table to eliminate chain

traversal when accessing multi-versioned records [45]. In ad-

dition, to ensure fault tolerance, state-of-the-art systems (e.g.,

FORD [68] and Motor [67]) adopt (f + 1)-primary-backup

replication, where each record is replicated across f backup

memory nodes and updated synchronously upon transaction
commits.

Each compute node deploys multiple coordinators to pro-
cess transaction requests from clients. Each request com-
prises a read-write set, which contains records to be modified,
and a read-only set, which contains records for retrieval. To
enforce serializability, the coordinators employ concurrency
control in transaction processing. For example, FORD [68]
and Motor [67] use a variant of Optimistic Concurrency
Control [25, 53, 65] for disaggregated memory architectures.
Processing a transaction is done in two phases (Figure 1):

e Execution phase: A coordinator first acquires locks (us-
ing CAS) for records in the read-write set (e.g., A and B)
and reads all relevant records (e.g., A, B, and C) from the
memory pool; locking is needed to prevent different trans-
actions from simultaneously modifying the same record.
It then executes the transaction, modifies records locally,
and stores the results in the memory of compute nodes.

https://github.com/adslabcuhk/crest

n4 0 30
S S
¥4 3 ¥ 20
(=% o
= FORD 210 FORD
31 MOTOR = MOTOR
£0 F 0
80 60 40 20 0.1 0.5 0.99 1.22

Number of warehouses
(a) TPC-C

Zipfian constant (6)
(b) SmallBank

Figure 2. Throughput (in thousand operations per second (KOPS))
of FORD and Motor under different contention levels.

e Commit phase: The coordinator performs validation on
the transaction to check for potential conflicts with other
transactions during the execution phase. It checks the ver-
sion numbers and lock states of records in the read-only set
to ensure no modification from other transactions. If vali-
dation succeeds, the coordinator writes logs to the memory
pool, updates all modified records (including replicas) in
the memory pool, and releases the locks, so as to make
the changes visible; otherwise, the coordinator aborts the
transaction.

2.3 Motivating Experiments

Transaction contention is prevalent in real-world applica-
tions (e.g., due to hotspots), thereby significantly reducing
throughput and increasing response latencies in transaction
systems [1, 43, 59, 66]. We show via experiments the per-
formance degradation of two state-of-the-art disaggregated
transaction systems, FORD [68] and Motor [67], under vary-
ing contention levels.

We consider two representative transaction benchmarks,
TPC-C [51] and SmallBank [3]. TPC-C is an e-commerce
benchmark that exhibits high contention in the warehouse
table, which is accessed by 92% of transactions. We vary the
contention level by issuing transactions to a varying number
of warehouses from 80 (i.e., low contention) to 20 (i.e., high
contention). SmallBank simulates banking operations (e.g.,
transfers and deposits). We configure the access to accounts
with varying skewness, following a Zipf distribution with
a Zipfian constant 0 varied from 0.1 to 1.22 as observed in
production workloads [6]. We use two compute nodes, each
running 60 coordinators, and two memory nodes.

Figure 2 plots the throughput of FORD and Motor under
TPC-C and SmallBank workloads. In TPC-C, both FORD
and Motor achieve high throughput at around 400 KOPS
under low contention (80 warehouses). However, as the con-
tention increases (20 warehouses), FORD’s throughput drops
by 71.2% to 105 KOPS only, while Motor, albeit benefiting
from its multi-version design, still has a throughput drop
of 57.3%. In SmallBank, the throughput trends are similar,
where FORD and Motor have a throughput drop by 81.7%
and 80.1% under high contention (8 = 1.22), respectively.

We argue that there are two root causes of our observed
performance degradation.

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

;\?90 580 O FORD B MOTOR

@ 60 §60

§3o FORD i

S MOTOR 320

<0 £ olbt , | |
80 60 40 20 80 60 40 20

Number of warehouses
(a) Abort rates

Number of warehouses
(b) False abort rates

Figure 3. Transaction aborts of FORD and Motor under TPC-C.

(i) Frequent false conflicts in record-level concurrency
control. Existing record-level concurrency control is a
coarse-grained approach and can introduce frequent false
conflicts, in which concurrent transactions access different
column fields of the same record, but are treated as conflicts
under record-level concurrency control and unnecessarily
abort transactions; accordingly, we define true conflicts as the
transactions that access the same column field of the same
record. We measure the abort rate, defined as the ratio of the
number of all aborted executions (due to both false and true
conflicts) to the total number of transactions, under TPC-C
across different contention levels. Figure 3(a) shows that the
abort rates for FORD and Motor increase with contention,
and reach 75.9% and 85.2% at 20 warehouses, respectively.
A significant portion of these aborts are false conflicts. Fig-
ure 3(b) shows that the false abort rates (i.e., the fraction of
aborts caused by false conflicts) under TPC-C reach 44.1% for
Motor and 40.7% for FORD. In modern OLTP workloads with
multi-attribute tables, transactions often access only specific
columns instead of whole records [2, 17, 41], implying that
false conflicts are common under record-level concurrency
control. For example, in TPC-C’s warehouse table, NewOrder
transactions only read the columns of identification informa-
tion (e.g., the name or location columns), while Payment
transactions update the balance column.

Note that SmallBank exhibits a zero false abort rate, as all
its transactions operate on the same column. Nevertheless,
given the complexity of modern OLTP schemas, mitigating
false conflicts remains necessary under high contention.

(ii) Long blocking time increases transaction latency.
True conflicts degrade performance as they prolong blocking
time. Current approaches enforce strict locking, which re-
quires transactions to hold locks on their read-write sets until
commits to prevent concurrent transactions from accessing
uncommitted data. In disaggregated memory architectures,
committing a transaction involves multiple network round-
trips for undo-logging, record updates, and lock releases,
thereby amplifying blocking time under contention.

To demonstrate, we measure the latencies of committed
transactions under TPC-C and SmallBank by decomposing
a transaction into execution, validation, and commit oper-
ations, where validation and commit operations together
form the commit phase (§2.2). For brevity, we focus on Mo-
tor, while FORD shows similar trends. Figure 4 shows that

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

§6 I Exec ,_\64 I Exec
o | E=Validate 8 48| T validate
‘O_ 4 — Commlt ; I:I Commlt
= 932
o9 9}
S s 16
-— .}
So 0
0.99 1.22
Number of warehouses Z|pf|an constant(6)
(a) TPC-C (b) SmallBank

Figure 4. Latency breakdown of Motor.

the execution latency dominates the total latency in Motor
and increases significantly under high contention, as more
transactions need to wait for committed results and cannot
be concurrently executed. In TPC-C, the total latency doubles
as the number of warehouses decreases from 80 to 20, with
the execution latency increasing by 119.8%. In SmallBank,
the execution latency increases by 152.9% as 0 increases from
0.1 to 1.22.

3 Design Overview

Main idea. CREST aims to mitigate false conflicts due to
record-level concurrency control and prolonged blocking
from strict commit procedures. It builds on three key tech-
niques: (i) cell-level concurrency control (§4), which elimi-
nates false conflicts by performing fine-grained concurrency
control at the granularity of a cell, which represents a col-
umn field within a record and the smallest accessible unit
in transactions; (ii) localized execution (§5), which exposes
uncommitted results within a compute node and allows trans-
actions to continue execution without waiting for commits
to the memory pool; and (iii) parallel commits (§6), which
parallelizes commits for high performance under transaction
dependency constraints.

The above techniques, however, pose new challenges to
RDMA communication and transaction correctness:

o RDMA communication: Cell-level concurrency control in-
troduces metadata to track each cell’s status, thereby aggra-
vating metadata access via RDMA. In particular, locking
multiple cells within a record incurs separate CAS calls for
each cell’s lock, while validating multiple cells needs to
fetch multiple cell versions via multiple READ calls. Thus,
cell-level operations can amplify RDMA communication
overhead, leading to degraded system performance.

e Transaction correctness: With localized execution and par-
allel commits, CREST needs to resolve local (within the
same compute node) and global (across compute nodes)
conflicts to maintain correct execution ordering. During
commits, the memory pool should maintain consistent
states with local execution results, especially when mul-
tiple transactions in the same compute node update the
same record, and only the latest valid version in the mem-
ory pool should be updated.

Architecture. Figure 5 depicts the architecture of CREST.

Qihan Kang, Mi Zhang, Patrick P. C. Lee, and Yongkang Hu

) D
Coordlnators + Txn Workflow ; - In-Memory Store ------
- | | [ngexstowre ||
1 | Localized E<__CeII-Level N Index Structure |
i p |
i | Execution | ||| Access |"! i
Record ' 1 i |Cell-orlented Recordsl !
| s =S :
et : - Redo Log ----------- :
Cache H | Updat | H
| : aralletl il zp;';s 'Pi Log Segments !
: | commits || | |
- J oo J

Compute Pool Memory Pool

Figure 5. Overall architecture of CREST.

CREST stores database records in the memory pool with a
specialized record structure, which mitigates RDMA over-
head during cell-level operations (§4). In each compute node,
CREST deploys multiple coordinators to process transactions
in two phases: localized execution and parallel commits. Dur-
ing localized execution, the coordinators within the same
compute node execute transactions locally and write uncom-
mitted results to a record cache, so that other transactions can
access the uncommitted results early without being blocked
from fetching data from the memory pool. During parallel
commits, CREST applies dependency-tracking redo-logging
to preserve transaction dependencies for correctness.

Design assumptions. CREST supports transactions in-
voked via stored procedures (i.e., pre-compiled database com-
mands) with user-configurable input parameters, a common
feature in transaction systems [22, 35, 36, 50]. This offers
two benefits. First, CREST can leverage stored procedures to
readily identify accessed columns in each table for cell-level
operations. Second, by analyzing input parameters, CREST
can determine if a record is read-only or will be updated, so
as to manage data correctly in localized execution.

4 Cell-level Concurrency Control
4.1 Record Structure

CREST allows concurrent transactions to operate on distinct
cells within the same record. It maintains a version for each
cell, co-located with the cell value within a cacheline. This
ensures atomic access via a single RDMA call from the com-
pute pool [10]. Each cell version comprises a 2-byte epoch
number (EN) and a 6-byte commit timestamp (TScommit). A
coordinator increments the epoch number with each cell
update to track modifications. The epoch number is used
for validation during the commit phase, while the commit
timestamp forms the global order of committed transactions.

To mitigate metadata access overhead in cell-level concur-
rency control, CREST adopts a specialized record structure.
Specifically, each record contains a record header storing
metadata and an array of cells, while multiple records are
stored continuously in the memory pool and accessed via
a hash index [8, 67, 68]. Figure 6 shows the record struc-
ture in CREST. The record header comprises multiple fields:

Record Structure 2B 6B

EN | TS.ommi | Cell Value __ |
| Header | Cell \| Cell | —_~ | Cell |
/e e 88 TTTm——_____ |

1 within Cacheline !

/
| Tableld | Key | Lock | EN Array
l&~ Concurrency Control Metadata

Figure 6. Record structure in CREST.

TableID, Key, Lock, and an epoch number array (EN array).
The TableID and Key fields uniquely identify a record, while
the Lock and EN array fields resolve write-write and read-
write conflicts, respectively. In particular, the EN array con-
solidates the epoch numbers of all cells in the same record,
so as to allow efficient multi-cell validation (§4.2).

4.2 Concurrent Access

Each coordinator accesses and updates cells via one-sided
RDMA operations, including locking and fetching relevant
cells in the execution phase, and validating and updating the
cells in the commit phase. To reduce RDMA communication
overhead due to per-cell processing, CREST proposes multi-
cell locking and multi-cell validation.

Multi-cell locking. To mitigate locking overhead, CREST
allocates one bit per cell to represent lock status and aggre-
gates the bits of all cells in a record into the 8-byte Lock field
in the record header. This enables a coordinator to atomi-
cally modify multiple cell locks using a single masked CAS
(masked-CAS) primitive provided by RDMA NIC hardware.
The masked-CAS primitive allows bit-level comparisons and
modifications within an 8-byte value. For example, to lock the
second and fourth cells, a coordinator issues a masked-CAS
call, which sets the CAS masks to 0101...000. To release
cell locks, the coordinator clears the corresponding bits from
1 to 0 using another masked-CAS call.

Multi-cell validation. To reduce validation overhead,
CREST consolidates epoch numbers of all cells into a con-
tiguous EN array in the record header, such that each epoch
number is consistently updated with the corresponding cell
version upon each transaction commit. Such consolidation
allows efficient validation of multiple read-only cells via a
single RDMA READ to the record header. However, the 2-byte
epoch number EN may lead to overflow (after 2!¢ = 65,536 up-
dates) and incorrect validation. Thus, CREST implements a
time threshold mechanism, inspired by Sherman [57]. Specif-
ically, if the duration between the first read in the execution
phase and the validation exceeds a threshold, the coordinator
reads the entire record and uses the commit timestamp for
validation. CREST currently sets the threshold to 65,536us,
assuming that each transaction lasts no more than 1 s (note
that the RDMA communication latency is typically around
2 ps). Such a conservative threshold ensures validation cor-
rectness, as a rollover of the 2-byte EN field requires at least

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

Multi-Column Conflicts Consistency Check

1
Txn1 X
@W: C1,,, @ W:C2,, 1 Cacheline —s- Cacheline |
X ~ 1
[Heade [c1 [¢2 [| v[]tock] Epoon [[|...]|
1 7 x 3
H S A ol e
;7@78-;977@5/7) ,,@,R;‘,Q?,@Wj' Epoch Number Match?
Inconsistent 1
Snapshot Txn2 | Metadata Snapshot Cell Snapshot

Figure 7. Example of resolving read-write conflicts in CREST.

65,536 transactions. As most transactions are short-lived and
completed within the threshold, it is unlikely for them to
read the entire record for validation (note that our evaluation
shows no rollover of epoch numbers (§8)).

After validation, the coordinator consistently updates cell
values and corresponding metadata in the record header
during the commit phase. For each record, the coordinator
first updates all modified cells, including both values and
cell versions (i.e., EN and TScommit), then increments the
corresponding epoch numbers in the EN array, and finally
releases the locks. By leveraging RDMA’s delivery order
guarantee [57, 68], the above steps can be executed with a
batch of ordered RDMA WRITE and masked-CAS calls in a
single round-trip [67].

4.3 Resolving Cell Conflicts

Ensuring correctness under cell-level concurrency control is
more complex than the record-level one. For example, in the
left part of Figure 7, a transaction Txn1 updates cells C1 and
C2, while another transaction Txn2 reads C1 and C2 concur-
rently. Under serializability, Txn2 should read either all old
or all new values of both C1 and C2, but Txn2 may read C1’s
old value and C2’s new value. Traditional approaches, such
as cacheline versioning [8, 10, 37, 45] or wrapped versioning
[57, 67], detect read-write conflicts for single objects only, but
fail across multiple cells. Thus, CREST adopts snapshot-based
verification to resolve intra-cell and inter-cell conflicts.

Intra-cell conflicts. CREST places each cell (with both cell
version and value) within a cacheline to allow atomic RDMA
READ and WRITE [10, 37]. This ensures that a transaction
reads either the old or new version of a cell. For cells exceed-
ing the cacheline size, CREST applies cacheline versioning
[8, 10] to split a large cell into multiple cachelines.

Inter-cell conflicts. To detect read-write conflicts across
cells, CREST uses the Lock and EN array fields in the record
header, both within one cacheline, to generate a snapshot
with an RDMA READ. As shown in the right part of Figure 7,
CREST determines that all read cells are consistent if: (i) the
locks of read cells are not acquired by other transactions and
(ii) the epoch numbers in the record header snapshot match
the epoch numbers in the cell snapshots. If both conditions
hold, CREST obtains a consistent snapshot, as the locks of all
updated cells can be released only after all cells are updated.

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

Coordinators ~__________| Pipeline Execution
Update B Txn Logi E Txnt
TScomz = 10 B S T

| Txn3

Key=B |Ref|ENArray|
Cache Mode

Version List |

Record Cache

Admilssion

|Header| Cell | Cell |

Remote Records

CNs
MNs :

Figure 8. Localized execution in CREST.

4.4 Discussion

While CREST shares conceptual similarities with column-
level concurrency control for web applications [69] (e.g.,
both employ fine-grained locking), CREST does not maintain
metadata for an entire column as in column-level concur-
rency control. Instead, CREST associates metadata with each
cell within a record, and we call this cell-level concurrency
control.

To reduce metadata overhead caused by cell-level concur-
rency control, one solution is to apply cell-level concurrency
control only to the cells with high contention. CREST inserts
or deletes entire rows by acquiring all cell locks viaan RDMA
CAS. To support efficient deletion, CREST uses one spare bit
in the record header’s Lock field to mark whether the record
has been logically deleted, and later frees the deleted records
on memory nodes.

CREST aggregates cell metadata into a single cacheline
(64 bytes), so the maximum number of supported cells is
bounded. The 8-byte Lock field supports at most 64 cells,
while the EN array supports up to 20 cells. This suffices
for common OLTP workloads (§8.2). For tables exceeding 20
columns, CREST consolidates all cells beyond the 20th into a
single large cell, but may reintroduce false conflicts and limit
concurrency for wide tables. One potential improvement is
to consolidate cells based on transactions’ access patterns
(e.g., grouping read-intensive cells) to mitigate conflicts.

5 Localized Execution

CREST uses localized execution to accelerate the processing
of transactions running in the same compute node. The key
idea is to allow a coordinator to locally operate on uncommit-
ted record versions within the same compute node, instead
of waiting for the commits of prior transactions and fetching
the latest versions from the memory pool. Figure 8 shows
the workflow of localized execution.

5.1 Local Data Management

Each compute node maintains fetched records and uncom-
mitted record versions in a record cache, accessed by multiple
coordinators. The record cache keeps multiple local objects,
each corresponding to a record in the memory pool. A local

Qihan Kang, Mi Zhang, Patrick P. C. Lee, and Yongkang Hu

object includes three fields to support localized execution
across coordinators: (i) reference counter, which tracks the
number of local transactions accessing the record; (ii) epoch
array, which specifies the array of epoch numbers of all
cells (i.e.,, EN array in the record header), and (iii) version
list, which stores uncommitted versions of the record. All
records are cached in either read-write or read-only mode. If
a record is to be updated, it is cached in read-write mode,
which involves acquiring cell locks (§4.2); otherwise, it is
cached in read-only mode, which only requires fetching cells
of the record. CREST tracks the numbers of local transactions
accessing the record in read-only and read-write modes with
readers and writers variables in the reference counter,
respectively.

The record cache dynamically manages local objects to
control memory usage. A local object is either created when
its corresponding record is accessed for the first time, or
destroyed if no transaction in this compute node accesses
this record. A coordinator checks the record cache for the
required records before executing a transaction. For any
uncached record, the coordinator initiates cache admission
by fetching the record from the memory pool. To prevent
redundant I/O and local conflicts, CREST ensures that only
one coordinator performs cache admission for each record.

Since local transactions may access uncommitted versions,
CREST tracks dependencies between transactions to ensure
correctness in the commit phase. For example, if transac-
tion Txn2 reads or updates a version created by transaction
Txn1, Txn2 commits only if Txn1 commits, or aborts if Txn1
aborts. CREST assigns each transaction a unique transaction
ID before execution and embeds it in all created local ver-
sions. When a transaction accesses a local version, it adds the
embedded ID to its own dependency list, which is checked
during the commit phase to enforce consistency.

5.2 Pipelined Execution

A coordinator executes a transaction once all the required
records are locally cached. CREST adopts two-phase locking
(2PL) to ensure serializability across all local transactions,
as 2PL excels in high-contention workloads [56]. However,
applying 2PL directly to the whole transaction can extend
lock holding time when a transaction involves key dependen-
cies [66], where the next record’s primary key depends on
the current record’s value. CREST proposes pipelined exe-
cution, which divides a transaction workflow into execution
blocks and pipelines the processing of execution blocks. At
a high level, CREST combines 2PL with timestamp ordering
during localized execution, where it applies 2PL within an
execution block and uses execution timestamps across dif-
ferent execution blocks to maintain consistent ordering. It
groups operations with key dependencies within the same
execution block and releases local locks at the end of an
execution block, instead of holding all local locks for the
entire transaction. Note that the execution blocks are pre-

Txn Ly Release local
Txn1 [READ R1] JREAD R2]]; locks of R1, R2
1

after R2 is updated

Fommm— e ——
I

READ R1 i
:Rl,v:Rl_\H_l: Block1 Txn2

{Blocked by R1}![][READ_R2](]

--------- - Pipeline Execution ----------

! key(R2)=R1.v

{READ R2 \Block2 Block1 Block2
R2.v=R2. vl | Txn1 [READ R1|[](READ R2]
Tan2 (ReAD 2]

Figure 9. Example of pipelined execution. The assignment
Key(R2)=R1.v sets R2’s primary key as R1’s updated value and
introduces a key dependency. Thus, R2 can be fetched only after
R1’s value is updated.

defined by programmers based on the transaction logic and
are generated during runtime.

Figure 9 shows an example of pipelined execution. CREST

coordinates inner-block execution and block ordering to ensure
serializability.
Inner-block execution. Within each block, CREST applies
2PL using local locks maintained by each local object. Before
execution, a coordinator acquires all necessary local locks in
ascending order of the tuple (TableID, Key) to prevent dead-
locks [12]. For writes, the coordinator creates and appends a
new local version to the version list. As a transaction may
abort during the commit phase, CREST keeps all interme-
diate versions in the compute node without updating the
record cache in-place. For reads, the coordinator accesses
the latest local version (the tail of the version list). Once the
coordinator detects key dependencies, the current block exe-
cution is completed. Then, the coordinator releases all locks
acquired in the current block and starts fetching records for
the next block.

Block ordering coordination. While 2PL ensures serial-
izability within an execution block, the execution order of
transactions must remain consistent across different blocks.
As shown in Figure 10, both transactions Txnl and Txn2 try
to access records A and B: Txn1 updates A and reads B in its
first and second blocks, respectively, while Txn2 updates A
and B in its first and second blocks, respectively. Suppose
that Txn2 depends on Txn1 (i.e., Txn1 should be executed
before Txn2). However, the actual execution may lead to
a conflicting dependency that violates serializability: Txn2
updates A based on Txn1’s version in the first block, while
Txn1 reads B based on Txn2’s version in the second block.
To coordinate block ordering, CREST tags timestamps to
locally written versions to detect conflicting dependencies
across blocks during local execution. Each transaction is as-
signed an execution timestamp TSexec, which is generated
from a monotonically increasing counter in the compute
node and assigned after the coordinator acquires all local
locks in the transaction’s first block. The execution timing
ensures a key ordering property: if Txn2 depends on Txn1 in
the first block, then Txn1’s TSexec must be less than Txn2’s
TSexec, as Txn1 acquires TSexec before releasing its local

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

Reverse order detected

1
: TS =t,
Txn1 | Write(a) | [Read(s) | I Txn1 || TS(A) =, | | TS®)=t, |>11
! TS=t,
vt [] |)
Time Order ! TS:ty b, Time Order

Figure 10. Example of block ordering coordination. The left part
shows a reverse order across blocks in Txn1 and Txn2, while the
right part shows that Txn1 detects a reverse order, where TSexec
of B’s latest version (t2) is greater than its own TSexec (t1).

locks. The coordinator tags all local versions with the corre-
sponding TSexec. For example, in Figure 10, the coordinator
tags any locally written versions of Txn1 (i.e., A) with #; and
those of Txn2 (i.e., A and B) with t,. During block execution,
if a transaction accesses a local version with a tagged times-
tamp greater than its own TSexec (e.g., when Txn1 reads B,
B’s tagged timestamp is t,, which is greater than Txn1’s own
TSexec t7), it implies that a later transaction has already up-
dated the record and violates the order enforced by TSexec,
so the coordinator aborts the transaction. Note that CREST
only detects, instead of repairing, any reverse ordering, yet
in practice, such reverse ordering rarely happens and local
execution still improves overall performance by pipelining
execution blocks (§8.4).

6 Parallel Commits

After processing all records in localized execution, a transac-
tion enters the commit phase, which comprises validation,
redo-logging, and applying updates to the memory pool. To
reduce commit latency while ensuring correctness (i.e., the
order of applying updates to the memory pool must be con-
sistent with that of local execution), CREST parallelizes the
commits of different transactions using dependency-tracking
redo-logging and last-writer-wins mechanisms.

Validation. CREST validates a transaction by checking the
epoch numbers of all involved records and any dependent
transaction. Checking the epoch numbers ensures that the
transaction’s records have not been updated by other trans-
actions in different compute nodes (note that all transactions
in the same compute node are already serialized by local
concurrency control). Specifically, for each record in a trans-
action’s read-only set, the coordinator compares the epoch
numbers of all cells accessed in the record cache during the
execution phase with the latest epoch numbers of the record
in the memory pool. If the two epoch numbers differ, the co-
ordinator concludes that the read-only set has been modified
by another transaction and the transaction aborts. Otherwise,
the coordinator continues to check whether any dependent
transaction aborts; if so, the current transaction also aborts.
If the transaction passes the above checks, the coordinator
considers the transaction committable (i.e., ready to apply
updates to the memory pool), assigns a commit timestamp,

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

and updates the TScommit field of all local versions.

Redo-logging. CREST uses dependency-tracking redo-
logging to ensure atomicity during the commit phase, so
that it can always roll forward committed transactions even
though some dependent transactions crash. Specifically, for
each transaction, the coordinator generates a log entry that
contains the transaction ID, modification logs, and a list of
dependent transaction IDs. It writes the log entry to the
memory pool using an RDMA WRITE. In the memory pool,
CREST allocates fixed-size log segments to each coordinator.
Each log segment serves as a queue of log entries for trans-
actions processed by a specific coordinator, such that the
coordinator can append a new log entry to the log segment’s
tail. A transaction is committed if the transaction is com-
mittable during validation and its log entry persists in the
memory pool. During crash recovery, CREST restores the
memory pool to a consistent snapshot using the log entries
from redo-logging.

Applying updates. CREST adopts a last-writer-wins mech-
anism to ensure serializability when applying updates to
the memory pool. CREST uses the writers variable in the
reference counter (§5.1) to determine the last writer. After
confirming that a transaction is committable, the coordina-
tor decrements writers to indicate the write completion. If
writers reaches zero, the coordinator is identified as the
last writer, and its local version is deemed the latest commit-
table version. The last writer then updates the records in the
memory pool and releases the locks.

7 Correctness and Overhead Analysis

In this section, we show that CREST provides ACID guaran-
tees and incurs limited space and communication overhead.

7.1 ACID Guarantees

Atomicity. CREST ensures atomicity by applying all oper-
ations within a transaction or none at all via dependency-
tracking redo-logging and last-writer-wins during parallel
commiits (§6). A transaction is committed only if: (i) it passes
validation and is committable, and (ii) all cell updates are
persistently logged. For concurrent updates to the same cell,
the writer with the highest TScommit prevails. This ensures
atomic visibility; that is, either all updates from a transac-
tion are applied via redo-logging, or none are applied if the
transaction is aborted.

Consistency. CREST maintains consistency with cell-level
conflict detection (§4) and localized execution (§5). It resolves
intra-cell conflicts using atomic cacheline updates, and de-
tects inter-cell conflicts using the Lock and EN array fields
in the record header. Before executing a transaction locally,
CREST validates cached records to ensure that data reads
reflect a consistent snapshot.

Isolation. CREST ensures isolation across concurrent trans-
actions using timestamp ordering (§5.2 and §6) and concur-

Qihan Kang, Mi Zhang, Patrick P. C. Lee, and Yongkang Hu

Table 1. Space overhead in memory nodes.

Workload FORD Motor CREST
(a) Metadata-only, without cacheline padding
TPC-C 7.49% 58.75% 20.65%
SmallBank 39.84% 318.75% 42.19%
YCSB 9.66% 63.64% 27.27%
(b) With cacheline padding
TPC-C 19.61% 63.92% 41.30%
SmallBank 100.00% 400.00% 100.00%
YCSB 45.45% 81.82% 45.45%

rency control (§4). Each transaction is assigned an execution
timestamp TSexec to determine the local execution order
among different blocks and a commit timestamp TScommit
to form the global order of committed transactions. CREST
adopts 2PL to ensure serializability among all local trans-
actions and uses epoch numbers (i.e., EN) to serialize trans-
actions across different compute nodes. Note that exposing
uncommitted execution results does not compromise seri-
alizability, as local executions within a compute node are
correctly coordinated.

Durability. CREST ensures durability by writing a log entry
containing all updates to the memory pool via RDMA WRITE
before marking a transaction as committed and applying the
updates (§6). All committed transactions are recoverable with
redo-logging. CREST achieves fault tolerance via primary-
backup replication, where each record has multiple replicas
and updates are applied to all replicas.

7.2 Space Overhead

CREST introduces extra metadata. Here, we analyze its space
overhead in memory nodes and compute nodes.

Space overhead in memory nodes. Table 1 compares
the space overhead of FORD, Motor, and CREST in mem-
ory nodes for the TPC-C [51], SmallBank [3], and YCSB [9]
workloads (§8.2). For each workload (with multiple tables),
we measure the space overhead based on the number of
records, number of cells per record, and cell sizes in each
table. We first examine the metadata overhead without cache-
line padding (Table 1(a)). As all workloads have relatively
large cells (see detailed schemas in §8.2), the overall meta-
data overhead of CREST remains moderate. CREST shows
higher space overhead than FORD, especially for the TPC-C
and YCSB workloads with a high number of cells per record,
as CREST adds an epoch number and a commit timestamp
to each cell. Motor has the highest space overhead due to
extensive metadata for MVCC support. CREST trades rea-
sonable space overhead for increased transaction processing
throughput.

We also consider the scenario where cacheline padding

Table 2. RDMA operations issued by a transaction.

Systems Execution Validation Commit
FORD / READ (read-only)
Motor | CAS+READ (read-write) READ WRITE+CAS
READ (read-only) WRITE+
CREST masked-CAS+ READ masked-CAS
READ (read-write)

is enabled, where padding is added to align with 64-byte
cachelines (Table 1(b)). All systems incur increased space
overhead due to cacheline padding, and the overall space
overhead of CREST still lies between FORD’s and Motor’s.

Space overhead in compute nodes. CREST caches each
transaction’s working-set records in the compute node’s
memory, which is freed when the reference counter reaches
zero (i.e., no active transaction). Thus, records reside in the
cache only during transaction execution, with memory usage
proportional to the transaction’s working-set size. Note that
a transaction cannot be executed if its working set exceeds
the memory capacity of a compute node. Nevertheless, for
common OLTP workloads, where transactions are short-
lived and access small data sets, the memory pressure is
limited. Compared to FORD and Motor, CREST only adds a
reference counter (2 bytes) and an epoch number (2 bytes).
For example, under TPC-C (which contains larger records
than SmallBank and YCSB), FORD, Motor, and CREST incur
an average memory usage of 1.96 KiB, 3.99 KiB, and 2.48 KiB,
respectively.

7.3 RDMA Communication Overhead

CREST introduces no additional RDMA communication over-
head compared to record-level transaction systems. Table 2
compares the RDMA operations issued in each transaction
for FORD, Motor, and CREST. CREST uses one READ for read-
only data or one masked-CAS plus one READ for read-write
data during execution, one READ during validation, and one
WRITE plus one masked-CAS during commit. While CREST
reads more data due cell-level concurrency control, the per-
formance impact is minimal albeit the small size differences,
as the number of RDMA operations (or round-trip times
(RTTs)) is the major factor. Localized execution further re-
duces RTTs by skipping some READ operations. On the other
hand, Motor can incur additional RTTs due to MVCC sup-
port, such as separately reading consecutive version tuples
and values during execution.

8 Evaluation
8.1 Implementation

We implement the prototype of CREST in C++ from scratch,
with 14 K LOC. It has the following key components.

Local version management. In each compute node, CREST
uses multiple concurrent hash maps to index local objects.

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

Each hash map is assigned to a database table and each record
key is mapped to its corresponding local object. For local
versions, CREST allocates memory from pre-registered mem-
ory region to ensure that a local version does not consume
additional dynamic memory resources. All local versions are
released once the record is committed to the memory pool.

RDMA request handling. CREST uses coroutines to im-
prove CPU utilization [61, 68]. Each thread executes multiple
coroutines, each acting as a coordinator. After issuing RDMA
requests, a coordinator yields CPU control to the next corou-
tine. The waiting coroutine resumes execution upon com-
pletion of its RDMA requests. To mitigate CPU overhead of
posting RDMA requests and polling for completion, CREST
uses doorbell batching and selective signaling [20].

8.2 Methodology

Testbed. We conduct all experiments on a local cluster com-
prising five machines, three designated as compute nodes
and two as memory nodes. Each machine is equipped with
a 100 Gbps Mellanox ConnectX-5 Infiniband NIC, and all
machines are interconnected via a 100 Gbps Mellanox In-
finiband switch. Each compute node has an Intel(R) Xeon(R)
Platinum 8260 CPU with 48 cores and 8 GiB of DRAM to host
coordinators for transactions. Each memory node contains
192 GiB of DRAM to store database records and indexes. All
machines run Ubuntu 20.04 LTS with Linux kernel v5.4.0.

Benchmarks and configurations. We evaluate CREST

using the following transaction workloads:

e TPC-C [51]: It is a widely adopted benchmark for OLTP
systems. By default, it includes 40 warehouses (the number
is configurable), each including nine tables and five trans-
action types, with 92% being read-write transactions (e.g.,
creating orders or processing payments). Each record has
an average of 6.6 cells, with an average cell size 36.1 bytes.

o SmallBank [3]: It simulates banking services, where a small
fraction of accounts (“hot accounts”) issue most transac-
tions. We configure 100 K accounts, and use a Zipf distribu-
tion with a Zipfian constant 8 = 0.99 to model hot account
activities. Each record has only one cell with an average
cell size 26.7 bytes.

e YCSB [9]: It is a widely used benchmark for key-value
stores. We adapt it for transaction processing. It creates a
single table with 1 M records with four 40-byte cells each
and supports read and write transactions. Each read or
write transaction randomly selects N out of 1 M records
(by default, N = 4), where read transactions access all
cells of records, while write transactions randomly update
one cell of a record. We generate hot records using a Zipf
distribution with 8 = 0.99.

Setup. Before each experiment, we pre-load database records
and indexes into memory nodes. Each compute node initial-
izes coordinators and connects to the memory nodes for
transaction execution. By default, each compute node runs

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

FORD MOTOR —e— CREST

08 024 8

S S1s Se

g 6 2 2 W
sS4 812 J g4

2 6 2

[} Q [s%

=] £0 =]

24 96 168 240 24 96 168 240 24 96 168 240
of coordinators # of coordinators # of coordinators
(a) TPC-C (b) SmallBank

Figure 11. Exp#1: Throughput.

(c) YCSB

40 threads, each with two coroutines (i.e., 240 coordinators
across three compute nodes in total). For each workload, we
generate 10 M transactions per compute node.

We compare CREST with two state-of-the-art disaggre-
gated transaction processing systems: FORD [68] and Motor
[67], using their open-source prototypes for evaluation.

8.3 Overall Performance

We measure the throughput and latencies of CREST, FORD,
and Motor by varying the number of coordinators. Each
thread runs two coordinators, and we vary the number of
threads per compute node from 1 to 40, (i.e., the total number
of coordinators across three compute nodes increases from
24 to 240). We plot aggregated throughput (summed across
compute nodes), average latencies, and tail latencies.

Exp#1 (Throughput). Figure 11 shows the throughput of
CREST, FORD, and Motor. CREST consistently achieves the
highest throughput under all workloads. At 240 coordinators,
CREST achieves a throughput gain of 1.92%, 1.46X, and 1.85%
over Motor, and 2.76X, 1.89%, and 2.58% over FORD, for TPC-
C, SmallBank, and YCSB, respectively.

CREST also shows better scalability. For TPC-C, FORD
and Motor reach the peak throughput at 72 and 96 coordina-
tors, respectively, while CREST’s throughput increases until
144 coordinators and reaches 743.7 KOPS, 72.4% higher than
Motor’s and 112.6% higher than FORD’s. The reason is that
CREST allows multiple coordinators to operate on different
fields of the same record simultaneously. Similar trends are
observed in other workloads.

Exp#2 (Average and median latencies). Figure 12 shows
the average and median latencies of all systems. The latencies
increase with the number of coordinators due to more severe
contention and blocking. CREST consistently achieves the
lowest average latency across a different number of coor-
dinators. At 240 coordinators, CREST reduces the average
latency by 41.1-62.6% compared to FORD and 17.7-44.4%
compared to Motor. The latency reduction is attributed to
CREST’s localized execution, which reduces blocking time
for conflicting transactions on the same compute node.
Similar to the average latencies, the median latencies
increase with more coordinators. Under TPC-C, CREST
achieves the lowest median latency with up to 192 coor-
dinators. At 216 and 240 coordinators, Motor has a lower
median latency, yet it also has a higher abort rate and conse-

Qihan Kang, Mi Zhang, Patrick P. C. Lee, and Yongkang Hu

FORD MOTOR —o— CREST
600 120 320
S450 5 9 Z240
3300 3 60 3160
2450 WMMM g 5 =l 2 g T el

24 96 168 240 24 96 168 240 24 96 168 240
of coordinators # of coordinators # of coordinators

(a) TPC-C, Avg (b) SmallBank, Avg (c) YCSB, Avg

FORD MOTOR —e—CREST
320 120 120

8240 | % 90 Y

> > >

greo ,(,/e/‘// g 60 T s| S0 e
£ gojeo" € 30] e £ 30/f

- - -

24 96 168 240 O24 96 168 240 024 96 168 240
of coordinators # of coordinators # of coordinators

(d) TPC-C,P50 (e) SmallBank, P50 (f) YCSB, P50

Figure 12. Exp#2: Average (figures (a)-(c)) and median (figures (d)-
(f)) latencies.

[FORD 3 MOTOR I CREST
g16 g21
812 S 14
S =
> >
g, g7
g g
5 o 5 o

TPC-C SmallBank YCSB
Workloads

(a) P99 latencies

TPC-C SmallBank YCSB
Workloads

(b) P999 latencies

Figure 13. Exp#3: Tail latencies under different workloads.

quently more transaction retries, which lead to a higher tail
latency (Exp#3) and, overall, a higher average latency. Un-
der SmallBank, CREST and Motor have comparable median
latencies, both lower than FORD’s. CREST does not reduce
the median latency over Motor for SmallBank because more
than half of the transactions are uncontended. Under YCSB,
at 240 coordinators, CREST reduces the median latency by
45.8% and 47.2% compared to FORD and Motor, respectively.

Exp#3 (Tail latency). Figure 13 shows the 99th (P99) and
99.9th (P999) percentile latencies with 240 coordinators.
CREST achieves the lowest tail latencies under TPC-C and
SmallBank. Under TPC-C, the P99 latency of CREST is 15.2%
lower than Motor’s and 33.7% lower than FORD’s. Under
SmallBank, it is 36.7% lower than Motor’s and 42.1% lower
than FORD’s. The reduction is due to CREST’s reduced con-
tention, which avoids unnecessary blocking and transaction
aborts. Under YCSB, CREST has similar P99 latencies to
Motor and FORD as high contention persists, in which coor-
dinators across different compute nodes may still block each
other, leading in high tail latencies.

8.4 System Analysis

We analyze the performance gains of CREST by considering
both high and low skewness patterns. For TPC-C, we set the
number of warehouses as 40 for high skewness and 100 for
low skewness. For Smallbank and YCSB, we vary the Zipfian

Il Exec [Validate [Commit Il Others
—~60
g g
o 45 845
30 =30
(s}
c
1 215
©
-

0

o

FMC FMC FMC
TPC-C SmallBank YCSB

FMC FMC FMC
TPC-C SmallBank YCSB

(a) High skewness (b) Low skewness

Figure 14. Exp#4: Average latency breakdown for CREST (C), FORD
(F), and Motor (M).

3 MOTOR [Base @ + Cell-Level I + Localized
4
23
Co2
E
§ 1 .
0"FpC-C SmallBank YCSB 0073pC.C SmalBank YCSB
Workloads Workloads
(a) High skewness (b) Low skewness

Figure 15. Exp#5: Factor analysis. We normalize results to Base,
and the number above each bar represents the absolute throughput
of Base in KOPS.

constant 0 as 0.99 for high skewness and 6 as 0.1 for low
skewness.

Exp#4 (Average latency breakdown). Figure 14 shows the
average latency breakdown for CREST, FORD, and Motor.
CREST’s latency reduction mainly comes from localized exe-
cution during the execution phase. Under 6 = 0.99, CREST
reduces the execution latency by 54.3%, 65.9%, and 58.4% com-
pared to FORD, and by 48.7%, 61.3%, and 70.7% compared to
Motor, for TPC-C, SmallBank, and YCSB, respectively. Un-
der 6 = 0.1, CREST reduces the execution latency by 44.6%,
18.3%, and 27.7% compared to FORD, and by 46.1%, 32.1%,
and 15.4% compared to Motor, under TPC-C, SmallBank, and
YCSB, respectively.

Exp#5 (Factor analysis). We examine the contribution of
CREST’s proposed techniques to performance gains. We start
with a baseline system without the proposed techniques,
and incrementally add cell-level concurrency control and
localized execution (with parallel commits); note that for
transaction correctness, both local execution and parallel
commits must be performed together and cannot be isolated.
Here, we omit FORD, as Motor consistently outperforms
FORD.

Figure 15 shows the normalized throughput results with
respect to the baseline system. Under high skewness, adding
cell-level concurrency control increases throughput by 65.9%
for TPC-C and 46.6% for YCSB due to improved concurrency.
However, we do not observe improvements for SmallBank,
as all its transactions access the same table column. Adding
localized execution (with parallel commits) further increases

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

FORD MOTOR —e— CREST

—~9 & 54
g G—H\e\e 24 E
o o o3
¥6 X X
- 839_6_\\9 2
= S2 S
3 = =
= = ot
<3 a1 5
=

= = K
%0 60 20 "%7 o7 111 "%T 07 Am

Number of warehouses

(a) TPC-C

Zipfian constant (6)
(b) SmallBank

Zipfian constant (0)
(c) YCSB

Figure 16. Exp#6: Throughput versus skewness.

throughput by 48.9%, 78.1%, and 104.6% under TPC-C, Small-
Bank, and YCSB, respectively, due to direct local cache access
and reduced blocking time. Under low skewness, adding lo-
calized execution incurs extra cache management overhead,
reducing throughput by 3.6% compared to non-localized con-
figuration under YCSB. We argue that the cost is acceptable,
given the significant throughput gains in skewed conditions
that are common in practice. Note that cell-level concurrency
control still improves throughput over the baseline system
for TPC-C under low skewness, as false conflicts still exist.

8.5 Workload Sensitivity

Exp#6 (Impact of skewness). We evaluate the performance
of CREST, FORD, and Motor under different skewness set-
tings using TPC-C, SmallBank, and YCSB. For TPC-C, we
increase skewness by reducing the number of warehouses
from 100 to 20. For SmallBank and YCSB, we increase the
Zipfian constant (6) from 0.1 to 1.11 to simulate workloads
with higher contention.

Figure 16 shows the throughput results. As skewness in-
creases, all systems exhibit throughput degradation. Under
TPC-C, reducing warehouses from 100 to 20 (i.e., increased
skewness) results in a throughput drop of 18.8% for CREST,
which outperforms both FORD (48.7% drop) and Motor (52.6%
drop). Under SmallBank and YCSB with 6 = 1.11, CREST’s
throughput drops by 55.3% and 83.6%, respectively, compared
to uniform cases, due to the increased conflicts across com-
pute nodes and more aborts and blocking. Note that FORD
and Motor experience higher severe throughput drops, with
76.3% and 79.3% under SmallBank, and 95.8% and 95.1% under
YCSB, respectively.

CREST consistently achieves the highest throughput un-
der skewed distributions. At maximum skewness, CREST’s
throughput is 3.64X, 2.91%, and 4.54x over FORD’s, and
2.72%, 2.05%, and 3.02x over Motor, for TPC-C, SmallBank,
and YCSB, respectively. The throughput gain of CREST
grows with skewness. For example, for TPC-C with 60 ware-
houses (moderate skewness), CREST achieves 172.4% and
92.6% higher throughput than FORD and Motor, while its
throughput gain increases to 264.4% and 172.6% at 20 ware-
houses (high skewness), respectively. The reason is that
CREST’s localized execution mitigates contention among
transactions on the same compute node, especially under

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

O3 FORD [E=§ MOTOR EEE CREST
A 4 A 6
s 3 S 4
2 2 =3
5 1 5 2
oo S
1 2 3 4 1 2 3 4

Number of accessed records
(b) 8 = 0.1, Throughput

Number of accessed records
(a) 6 = 0.99, Throughput

FORD MOTOR —e— CREST
350 ~140
13,25158 2105
> >
§140 § 70 /
§ 70 &'#_'€ﬂ-ﬂ~e////£ E 35
0 1 2 3 4 0 1 2 3 4

Number of accessed records
(d) 8 = 0.1, Latency

Number of accessed records
(c) 6 = 0.99, Latency

Figure 17. Exp#7: Throughput and average latency under YCSB
when accessing a different number of records.
[FORD

0 MOTOR Wl CREST

Thpt (MOPS)
o N A O
Thpt (MOPS)
ON DO O

100 75 50 25 O
Write ratio (%)

(2) 0 = 0.99

100 75 50 25 O
Write ratio (%)

(b)6 =01
Figure 18. Exp#8: Throughput under YCSB versus write ratio.

more skewed conditions.

Exp#7 (Impact of number of accessed records). We ex-
amine the impact of the number of accessed records (N). We
focus on YCSB, and vary N from 1 to 4 under 6 = 0.99 (high
skewness) and 0 = 0.1 (low skewness).

Figure 17 shows the throughput results. All systems have
throughput drops as N increases due to increased transac-
tion conflicts. Under € = 0.99, CREST achieves the highest
throughput. At N = 1, CREST achieves 71.4% and 25.7%
higher throughput than FORD and Motor, respectively; at
N = 4, the throughput gain of CREST increases to 177.4%
and 102.3%, respectively. A larger N amplifies conflicts, so
the benefits of CREST’s contention resolution also increase.

Under 8 = 0.1, all systems have throughput drops as
N increases, but exhibit similar performance. With lim-
ited contention, the throughput depends on commit round-
trips (three per transaction for all systems in YCSB). CREST
matches state-of-the-art performance under less skewness.

Exp#8 (Impact of write ratio). We study the impact of
write ratio. We focus on YCSB and vary the write ratio from
100% (write-only) to 0% (read-only) under 8 = 0.99 (high
skewness) and 6 = 0.1 (low skewness).

Figure 18 shows the results. Under 6 = 0.99, CREST ex-
cels in write-intensive workloads (write ratio > 50%), with
180.9% and 105.1% higher throughput than FORD and Motor,

Qihan Kang, Mi Zhang, Patrick P. C. Lee, and Yongkang Hu

respectively, when the write ratio is 100%. As the write ratio
decreases, CREST’s gain diminishes; at a 25% write ratio, its
throughput is 16.9% higher than Motor’s. For the read-only
case, Motor outperforms CREST by 12.8% for two reasons: (i)
Motor eliminates validation for read-only transactions using
MVCC [67]; and (ii) CREST incurs additional overhead for
local cache management. Under 6 = 0.1, CREST shows less
throughput than Motor, by up to 10.1%.

9 Related Work

Accelerating distributed transactions. Extensive research
has focused on enhancing the performance of distributed
transactions. Some studies propose application-level op-
timizations, such as partitioning transaction workloads
[23, 31, 66] and adopting deterministic execution models
[13, 34, 50] to reduce transaction contention. Some studies
propose new concurrency control and commit protocols,
such as transaction reordering [42], runtime pipelining [62],
and batch commits [35]. Some studies exploit RDMA to re-
duce network latencies by leveraging RDMA’s one-sided
operations [8, 10, 11, 45] or specialized RPC frameworks
[21, 61]. All the above approaches target monolithic archi-
tectures, while our work focuses on disaggregated memory
architectures, which cannot directly apply optimizations
for monolithic architectures. In disaggregated memory ar-
chitectures, transaction executions on compute nodes are
separated from the data stored on memory nodes, so all con-
flict resolutions involve RDMA communications between
compute nodes and memory nodes, and require specialized
mechanisms to mitigate RDMA communication overhead
while providing transaction correctness guarantees (§3).

Memory disaggregation. Some studies enable transparent
disaggregated memory via specialized hardware [4, 15, 19,
29], OS kernels [18, 44, 46], or language runtimes [7, 39,
55]. Others optimize specific applications for disaggregated
memory, such as indexing structures [30, 38, 57, 70], key-
value stores [26, 48, 52, 58], caching systems [47], transaction
systems [32, 33, 67, 68], and databases [28].

Among the studies, transaction and database systems de-
signed for disaggregated memory [28, 33, 67, 68] are the
most relevant to our work. FORD [68] is the first transaction
system designed for disaggregated memory. It batches lock
and read operations to reduce the number of round-trips
required for transaction processing. It also maintains local
versions for validation during the commit phase, so as to
avoid additional round-trips for re-reading data. However,
this approach is limited to a single compute node. In the
scenario with multiple compute nodes, remote validation re-
mains necessary due to potential staleness of local versions,
thereby negating reduction in round-trips and prolonging
blocking time. In contrast, CREST uses localized execution
to expose uncommitted results early to effectively reduce
blocking time between conflicting transactions.

Motor [67] uses multi-versioning to mitigate read-write
conflicts and logging overhead, so as to achieve higher
throughput. However, both FORD and Motor execute con-
currency control at the record level, leading to false conflicts
under high-contention workloads. CREST addresses this is-
sue via fine-grained concurrency control.

Scythe [33] uses a hybrid concurrency control protocol
that delegates reads and writes of frequently accessed records
to memory nodes. However, it assumes sufficient computa-
tional capability in memory nodes to manage concurrent
transaction reads and writes. CREST follows the common
assumption that memory nodes have limited compute power.

HDTX [32] improves transaction performance via a fast
commit protocol, RDMA-enabled offloading, and decentral-
ized priority-based locking. Like FORD and Motor, HDTX
still uses record-level concurrency control and faces similar
performance issues under high-contention workloads.

GaussDB [28] is a distributed database that disaggregates
compute, memory, and storage. It leverages a page-level
ownership model, in which compute nodes temporarily own
pages and use record-level locks with two-phase locking
to process transactions. While this shares similarities to
CREST’s localized execution, CREST differs in two aspects.
First, CREST adopts cell-level concurrency control instead
of page-level ownership, thereby allowing concurrent opera-
tions on different cells within the same record across com-
pute nodes and avoiding false conflicts inherent in GaussDB’s
page-level approach. Second, CREST exposes uncommitted
results early to reduce blocking time, while GaussDB ad-
heres to traditional commit procedures, which write undo
logs before exposing results, and prolongs blocking periods.
Note that GaussDB is close-sourced and we cannot directly
compare it with CREST in evaluation.

Memory disaggregation for transactional support is re-
portedly deployed in production, such as ByteDance’s veDB
[49], Alibaba’s PolarDB-MP [63], and Huawei’s GaussDB
[28]. These production systems support one-sided RDMA
operations for fast transaction processing in disaggregated
memory architectures. However, they do not specifically ad-
dress the high-contention transaction workloads, as explored
in CREST.

10 Conclusion

We present CREST, a disaggregated transaction system
designed to efficiently handle high-contention workloads.
CREST adopts cell-level concurrency control to eliminate
false aborts, and localized execution to reduce the blocking
time of conflicting transactions. To ensure that modifica-
tions are correctly and efficiently applied to memory pool,
CREST introduces parallel commits together with consistent
crash recovery based on redo-logging. Experimental results
show that CREST outperforms FORD and Motor in different
workloads.

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

Acknowledgments

We thank our shepherd, Shuai Mu, and the anonymous re-
viewers for their comments. This work was supported in
part by the Major Research Plan of the National Natural
Science Foundation of China (Grant No. 92270202) and Re-
search Grants Council of Hong Kong (GRF 14214622). The
corresponding author is Mi Zhang.

References

[1] Raja Appuswamy, Angelos C Anadiotis, Danica Porobic, Mustafa K
Iman, and Anastasia Ailamaki. 2017. Analyzing the Impact of System
Architecture on the Scalability of OLTP Engines for High-Contention
Workloads. In Proc. of VLDB Endowment.

Martin Boissier, Carsten Alexander Meyer, Timo Djiirken, Jan Linde-

mann, Kathrin Mao, Pascal Reinhardt, Tim Specht, Tim Zimmermann,

and Matthias Uflacker. 2016. Analyzing Data Relevance and Access

Patterns of Live Production Database Systems. In Proc. of ACM CIKM.

Michael J Cahill, Uwe R6hm, and Alan D Fekete. 2009. Serializable

Isolation for Snapshot Databases. ACM Transactions on Database

Systems (TODS) 34, 4 (2009), 1-42.

Irina Calciu, M Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al

Maruf, Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking Software

Runtimes for Disaggregated Memory. In Proc. of ACM ASPLOS.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-

rah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and

Robert E Gruber. 2008. Bigtable: A Distributed Storage System for

Structured Data. ACM Transactions on Computer Systems (TOCS) 26, 2

(2008), 1-26.

Jigiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu, Yuanyuan Sun,

Huan Liu, and Feifei Li. 2020. HotRing: A Hotspot-Aware In-Memory

Key-Value Store. In Proc. of USENIX FAST.

Lei Chen, Shi Liu, Chenxi Wang, Haoran Ma, Yifan Qiao, Zhe Wang,

Chenggang Wu, Youyou Lu, Xiaobing Feng, Huimin Cui, Shan Lu, and

Harry Xu. 2024. A Tale of Two Paths: Toward a Hybrid Data Plane for

Efficient Far-Memory Applications. In Proc. of USENIX OSDL

Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen.

2016. Fast and General Distributed Transactions using RDMA and

HTM. In Proc. of ACM EuroSys.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking Cloud Serving Systems with

YCSB. In Proc. of ACM SoCC.

[10] Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: Fast Remote Memory. In Proc. of USENLX
NSDI

[11] Aleksandar Dragojevi¢, Dushyanth Narayanan, Edmund B Nightin-
gale, Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. 2015. No Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. In Proc. of ACM SOSP.

[12] KapaliP. Eswaran, Jim N Gray, Raymond A. Lorie, and Irving L. Traiger.
1976. The Notions of Consistency and Predicate Locks in a Database
System. Commun. ACM 19, 11 (1976), 624-633.

[13] Jose M Faleiro, Daniel J Abadi, and Joseph M Hellerstein. 2017. High
Performance Transactions via Early Write Visibility. In Proc. of VLDB
Endowment.

[14] Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin
Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Net-
work Requirements for Resource Disaggregation. In Proc. of USENIX
OSDI.

[15] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo
Jung. 2022. Direct Access, High-Performance Memory Disaggregation
with DirectCXL. In Proc. of USENIX ATC.

[16] Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts

[2

—

E

—

[4

flanv)

(5

—_

6

—

[7

—

8

—

[9

—

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

(17

—

[18

—

[27

—

[28

—

[29]

(30]

(31]

(32]

(33]

(34]

(35]

and Techniques. Elsevier.

Martin Grund, Jens Kriiger, Hasso Plattner, Alexander Zeier, Philippe
Cudre-Mauroux, and Samuel Madden. 2010. Hyrise: A Main Memory
Hybrid Storage Engine. In Proc. of VLDB Endowment.

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G Shin. 2017. Efficient Memory Disaggregation with Infin-
iswap. In Proc. of USENIX NSDL

Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying
Zhang. 2022. Clio: A Hardware-Software Co-Designed Disaggregated
Memory System. In Proc. of ACM ASPLOS.

Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In Proc. of USENIX
ATC.

Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST:
Fast, Scalable and Simple Distributed Transactions with Two-Sided
RDMA Datagram RPCs. In Proc. of USENIX OSDIL

Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,
Alexander Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden,
Michael Stonebraker, Yang Zhang, et al. 2008. H-Store: a High-
Performance, Distributed Main Memory Transaction Processing Sys-
tem. In Proc. of VLDB Endowment.

Antonios Katsarakis, Yijun Ma, Zhaowei Tan, Andrew Bainbridge,
Matthew Balkwill, Aleksandar Dragojevic, Boris Grot, Bozidar
Radunovic, and Yongguang Zhang. 2021. Zeus: Locality-Aware Dis-
tributed Transactions. In Proc. of ACM EuroSys.

Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, and
Ryan Stutsman. 2017. Rocksteady: Fast Migration for Low-Latency
In-Memory Storage. In Proc. of ACM SOSP.

Hsiang-Tsung Kung and John T Robinson. 1981. On Optimistic Meth-
ods for Concurrency Control. ACM Transactions on Database Systems
(TODS) 6, 2 (1981), 213-226.

Sekwon Lee, Soujanya Ponnapalli, Sharad Singhal, Marcos K Aguilera,
Kimberly Keeton, and Vijay Chidambaram. 2022. DINOMO: An Elas-
tic, Scalable, High-Performance Key-Value Store for Disaggregated
Persistent Memory. In Proc. of VLDB Endowment.

Feifei Li. 2019. Cloud-Native Database Systems at Alibaba: Opportuni-
ties and Challenges. (2019).

Guoliang Li, Wengang Tian, Jinyu Zhang, Ronen Grosman, Zongchao
Liu, and Sihao Li. 2024. GaussDB: A Cloud-Native Multi-Primary
Database with Compute-Memory-Storage Disaggregation. In Proc. of
VLDB Endowment.

Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, et al. 2023. Pond: CXL-based Memory Pooling Sys-
tems for Cloud Platforms. In Proc. of ACM ASPLOS.

Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng.
2023. A High-performance RDMA-oriented Learned Key-value Store
for Disaggregated Memory Systems. ACM Transaction on Storage (TOS)
19, 4 (2023), 1-30.

Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,
and Zhengkui Wang. 2016. Towards a Non-2PC Transaction Manage-
ment in Distributed Database Systems. In Proc. of ACM SIGMOD.
Haodi Lu, Haikun Liu, Yujian Zhang, Zhuohui Duan, Xiaofei Liao, Hai
Jin, and Yu Zhang. 2025. Fast Distributed Transactions for RDMA-
based Disaggregated Memory. In Proc. of USENLX ATC.

Kai Lu, Siqi Zhao, Haikang Shan, Qiang Wei, Guokuan Li, Jiguang Wan,
Ting Yao, Huatao Wu, and Daohui Wang. 2024. Scythe: A Low-latency
RDMA-enabled Distributed Transaction System for Disaggregated
Memory. ACM Transactions on Architecture and Code Optimization
(TACO) (2024).

Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: A
Fast and Practical Deterministic OLTP Database. In Proc. of VLDB
Endowment.

Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2021. Epoch-Based
Commit and Replication in Distributed OLTP Databases. In Proc. of

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

Qihan Kang, Mi Zhang, Patrick P. C. Lee, and Yongkang Hu

VLDB Endowment.

Yi Lu, Xiangyao Yu, and Samuel Madden. 2018. Star: Scaling Transac-
tions through Asymmetric Replication. (2018).

Xuchuan Luo. 2024. CHIME: A Cache-Efficient and High-Performance
Hybrid Index on Disaggregated Memory. In Proc. of ACM SOSP.
Xuchuan Luo, Pengfei Zuo, Jiacheng Shen, Jiazhen Gu, Xin Wang,
Michael R Lyu, and Yangfan Zhou. 2023. SMART: A High-Performance
Adaptive Radix Tree for Disaggregated Memory. In Proc. of USENIX
OSDL

Haoran Ma, Shi Liu, Chenxi Wang, Yifan Qiao, Michael D Bond,
Stephen M Blackburn, Miryung Kim, and Guoging Harry Xu. 2022.
Mako: A Low-Pause, High-Throughput Evacuating Collector for
Memory-Disaggregated Datacenters. In Proc. of ACM PLDL

Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent
Page Placement for CXL-Enabled Tiered-Memory. In Proc. of ACM
ASPLOS.

Barzan Mozafari, Carlo Curino, Alekh Jindal, and Samuel Madden.
2013. Performance and Resource Modeling in Highly-Concurrent
OLTP Workloads. In Proc. of ACM SIGMOD.

Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014.
Extracting More Concurrency from Distributed Transactions. In Proc.
of USENIX OSDL

Guna Prasaad, Alvin Cheung, and Dan Suciu. 2020. Handling Highly
Contended OLTP Workloads using Fast Dynamic Partitioning. In Proc.
of ACM SIGMOD.

Yifan Qiao, Chenxi Wang, Zhenyuan Ruan, Adam Belay, Qingda Lu,
Yiying Zhang, Miryung Kim, and Guoqing Harry Xu. 2023. Hermit:
Low-Latency, High-Throughput, and Transparent Remote Memory
via Feedback-Directed Asynchrony. In Proc. of USENLX NSDL

Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chat-
zopoulos, Aleksandar Dragojevi¢, Dushyanth Narayanan, and Miguel
Castro. 2019. Fast General Distributed Transactions with Opacity. In
Proc. of ACM SIGMOD.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A Disseminated, Distributed OS for Hardware Resource Dis-
aggregation. In Proc. of USENIX OSDL

Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Yuxin Su, Jiazhen Gu, Hao
Feng, Yangfan Zhou, and Michael R Lyu. 2023. Ditto: An Elastic and
Adaptive Memory-Disaggregated Caching System. In Proc. of ACM
SOSP.

Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi Yang, Yuxin Su,
Yangfan Zhou, and Michael R Lyu. 2023. FUSEE: A fully Memory-
Disaggregated Key-Value Store. In Proc. of USENIX FAST.

Jason Sun, Haoxiang Ma, Li Zhang, Huicong Liu, Haiyang Shi, Shangyu
Luo, Kai Wu, Kevin Bruhwiler, Cheng Zhu, Yuanyuan Nie, et al. 2023.
Accelerating Cloud-Native Databases with Distributed PMem Stores.
In Proc. of IEEE ICDE.

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel] Abadi. 2012. Calvin: Fast Distributed Trans-
actions for Partitioned Database Systems. In Proc. of ACM SIGMOD.
TPC-C Benchmark. Accessed in 2025. https://www.tpc.org/tpcc/.
Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating
Persistent Memory and Controlling Them Remotely: An Exploration
of Passive Disaggregated Key-Value Stores. In Proc. of USENIX ATC.
Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and
Samuel Madden. 2013. Speedy Transactions in Multicore In-Memory
Databases. In Proc. of ACM SOSP.

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmade-
sam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Mau-
rice, Tengiz Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora:
Design Considerations for High Throughput Cloud-Native Relational
Databases. In Proc. of ACM SIGMOD.

https://www.tpc.org/tpcc/

(55]

(56]

(57]

(58]

(59]

(60]

[61]

(62]

[63]

Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D. Bond, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. 2020. Semeru: A Memory-Disaggregated Managed
Runtime. In Proc. of USENIX OSDL

Jiachen Wang, Ding Ding, Huan Wang, Conrad Christensen, Zhaoguo
Wang, Haibo Chen, and Jinyang Li. 2021. Polyjuice: High-Performance
Transactions via Learned Concurrency Control. In Proc. of USENIX
OSDL

Qing Wang, Youyou Lu, and Jiwu Shu. 2022. Sherman: A Write-
Optimized Distributed B+Tree Index on Disaggregated Memory. In
Proc. of ACM SIGMOD.

Ruihong Wang, Jianguo Wang, Prishita Kadam, M Tamer Ozsu, and
Walid G Aref. 2023. dLSM: An LSM-based Index for Memory Disag-
gregation. In Proc. of IEEE ICDE.

Tianzheng Wang and Hideaki Kimura. 2016. Mostly-Optimistic Con-
currency Control for Highly Contended Dynamic Workloads on a
Thousand Cores. In Proc. of VLDB Endowment.

Xingda Wei, Rong Chen, and Haibo Chen. 2020. Fast RDMA-based
Ordered Key-Value Store using Remote Learned Cache. In Proc. of
USENIX OSDIL

Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Decon-
structing RDMA-Enabled Distributed Transactions: Hybrid is Better!.
In Proc. of USENLX OSDL

Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kaprit-
sos, and Yang Wang. 2015. High-Performance ACID via Modular
Concurrency Control. In Proc. of USENIX OSDIL

Xinjun Yang, Yingqiang Zhang, Hao Chen, Feifei Li, Bo Wang, Jing

[64]

[65]

[66]

[67]

[68]

[69]

[70]

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

Fang, Chuan Sun, and Yuhui Wang. 2024. PolarDB-MP: A Multi-
Primary Cloud-Native Database via Disaggregated Shared Memory.
In Proc. of ACM SIGMOD.

Zhifeng Yang, Quanqing Xu, Shanyan Gao, Chuanhui Yang, Guoping
Wang, Yuzhong Zhao, Fanyu Kong, Hao Liu, Wanhong Wang, and Jin-
liang Xiao. 2023. OceanBase Paetica: A Hybrid Shared-Nothing/Shared-
Everything Database for Supporting Single Machine and Distributed
Cluster. In Proc. of VLDB Endowment.

Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas.
2016. TicToc: Time Traveling Optimistic Concurrency Control. In Proc.
of ACM SIGMOD.

Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim Kraska. 2020.
Chiller: Contention-Centric Transaction Execution and Data Partition-
ing for Modern Networks. In Proc. of ACM SIGMOD.

Ming Zhang, Yu Hua, and Zhijun Yang. 2024. Motor: Enabling Multi-
Versioning for Distributed Transactions on Disaggregated Memory. In
Proc. of USENIX OSDL

Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. 2023. Localized
Validation Accelerates Distributed Transactions on Disaggregated
Persistent Memory. ACM Transactions on Storage 19, 3 (2023), 1-35.
Xiaodong Zhang and Jing Zhou. 2022. High-Performance Transaction
Processing for Web Applications Using Column-Level Locking. In Proc.
of Springer WISE.

Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua.
2021. One-sided RDMA-Conscious Extendible Hashing for Disaggre-
gated Memory. In Proc. of USENIX ATC.

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

A Artifact Appendix
A.1 Abstract

The artifact contains the CREST prototype, runner scripts
for reproducing the experiments, and implementations of
related workloads. The CREST prototype is a disaggregated
transaction system featuring cell-level concurrency control,
localized execution, and parallel commits. It is intended to
validate the results reported in the paper and support further
research on disaggregated transaction systems.

A.2 Artifact check-list (meta-information)

e Program: C++ programs, python scripts, and shell scripts.

o Compilation: CMake (version >= 3.5), g++ (version >= 11),
Make.

e Data set: TPC-C, SmallBank, and YCSB.

¢ Run-time environment: Linux (Ubuntu 20.04 LTS or newer is
recommended)

e Hardware: See §A.3.2 for details.

e Metrics: Throughput (transactions per second) and latencies
(average, P50, P99, and P999 latency in microseconds).

e Output: Text log files with processed statistical results.

o Experiments: Overall performance, average latency breakdown,
factor analysis, workload sensitivity.

e How much disk space required (approximately)?: At least
10 GiB for storing log files.

e How much time is needed to prepare workflow (approxi-
mately)?: Less than 30 minutes for initial setup, including con-
figuring the setting, compiling code.

e How much time is needed to complete experiments (ap-
proximately)?: Our scalability evaluation takes over 14 hours,
while other experiments take around 6 hours in total.

e Publicly available?: Yes.

e Code licenses (if publicly available)?: Apache-2.0 license.

e Archived (provide DOI)?: It is archived on Zenodo with DOI:
10.5281/zenodo. 18227294 .1t can be accessed at https://zenodo.
org/records/18227294.

A.3 Description

A.3.1 How to access. The artifact is available on Github
at https://github.com/adslabcuhk/crest.

The artifact contains a README file, source code of
CREST, scripts, and workload implementations. We explain
these contents below, while more detailed information to
run the artifact is provided in the README file.

The src directory contains the source code of CREST. The
implementation of localized execution is in the transaction
sub-directory, while the implementation of cell-level concur-
rency control is in the transaction and db sub-directories.

The scripts directory contains runner scripts for running
experiments and collecting the results.

The benchmark directory contains the code to run and
manage benchmark workloads, including TPC-C, SmallBank,
and YCSB. BenchRunner . cc is the entry point of clients and
servers with proper parameters.

Qihan Kang, Mi Zhang, Patrick P. C. Lee, and Yongkang Hu

A.3.2 Hardware dependencies. To run all experiments
in our artifact, we recommend a cluster of at least five Linux
servers: two servers are used as memory nodes, and the other
three servers are used as compute nodes. Each memory node
should have at least 128 GiB of DRAM, and each compute
node should have at least 16 GiB of DRAM. All servers should
use Mellanox ConnectX-5 RNICs and be connected via an
Infiniband switch.

A.3.3 Software dependencies. The software dependen-

cies include (see installation instructions in the README

file):

e RDMA driver version MLNX_OFED_LINUX-4.9-7.1.0.0 to
enable using of RDMA experimental verbs.

o C++ third-party dependencies including TBB, Memcached,
gflags, boost, and abseil.

o python and python libraries including python 3.8+, numpy,
scipy, matplotlib, scp, and paramiko.

A.3.4 Data sets. We provide the implementations of TPC-
C, SmallBank, and YCSB workloads in the benchmark direc-
tory. The data sets are generated at runtime based on the
configuration files in the config subdirectory.

A.4 Installation

The installation process includes the following steps. We use
Ubuntu 20.04 LTS as an example, but the steps are similar
for other Linux distributions.

1. Install the RDMA driver. Each machine needs to install
the driver with version MLNX_OFED_LINUX-4.9-7.1.0.0
for using RDMA experimental verbs. The driver can be
downloaded here in the “Archived Versions”. Extract the
package and run the installation script mlnxofedinstall
with root privilege.
tar -xzvf MLNX_OFED_LINUX-4.9%.tgz
cd MLNX_OFED_LINUX-4.9-7.1.0.0-ubuntu20.04-x86_64
sudo ./mlnxofedinstall

2. Install build tools. CREST requires gcc and g++ (version
>= 11). Install the compilers. In Ubuntu, the compilers
may be added via ppa.
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install gcc-11 g++-11
Use gcc-11 and g++-11 by default
sudo update-alternatives -install /usr/bin/gcc gcc
/usr/bin/gcc-11 110
sudo update-alternatives -install /usr/bin/gt++ g++
/usr/bin/g++-11 110
We use cmake as our building tool. Install cmake using the
following commands:
sudo apt-get install -y cmake

3. Install C++ third-party dependencies. The followings
are the instructions to install the dependencies.
sudo apt-get install -y libgflags-dev libtbb-dev
libmemcached-dev memcached libmemcached-tools

https://zenodo.org/records/18227294
https://zenodo.org/records/18227294
https://github.com/adslabcuhk/crest
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/

wget https://archives.boost.io/release/1.83.0/
source/boost_1_83_0.tar.gz

tar -zxf boost_1_83_0.tar.gz

cd boost_1_83_0

./bootstrap.sh —prefix=path/to/installation/prefix
sudo ./b2 install

cd ../

git clone git@github.com:abseil/abseil-cpp.git
cd abseil-cpp

cmake -B build

cd build

sudo make install

cd ../../

4. Instal Python script dependencies. Before running
these Python scripts, run the following command to install
the dependencies:
cd scripts
pip install -r requirements

5. Build CREST. After installing the above dependencies,
build CREST using the following commands:
cd CREST
make release
After successfully building the entire codebase, the binary
file build/benchmark/bench_runner is created and will
be used for benchmarking.

A.5 Experiment workflow

A.5.1 Setting up the configuration file. In CREST, each
configuration file (xxx. json under config directory) con-
tains all necessary information of this workload. It contains
three parts: (i) mn, the configuration of each server compris-
ing memory pool; (ii) cn, the configuration of each server
comprising compute pool; and (iii) workload-specific con-
figurations related to a specific workload. For each node,
configure the following fields:

e The unique ID and IP address of this node

e devname, ibport and gid that are used to initialize the
RDMA device

e mr_size is the size of memory region used for storing data.
Create a large memory region for memory node and a
small memory region for compute node.

A.5.2 Running nodes. CREST can manually start mem-
ory nodes and compute nodes using the binary file
bench_runner generated from compilation.

Memory node startup:

./bench_runner --type=mn --id=<id>
--config=<path_to_config> --workload=<workload>
--threads=<threads> --coro=<coros>

Compute node startup:

./bench_runner --type=cn --id=<id>
--config=<path_to_config> --workload=<workload>
--threads=<threads> --coro=<coros>
-=txn_num=<txn_num> --output=<path_to_output>

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

The bench_runner file takes multiple parameters, which
need to be carefully set:

e type: set it to be mn or cn.

e id: the unique identifier of the node. When starting up the
node, make sure to use the correct ID for this node.

e config: set it to be the path to the configuration file.

e workload: the workload to execute. It needs to be consis-
tent with the config path.

After successfully booting the memory node, the output
would be “MNx waits for incoming connection”. You
can use the compute node to run the workloads.

A.5.3 Data collection. After running a workload, each
compute node will generate log files and results in the folder
bench_result. We also provide scripts for reproducing the
results presented in the paper. The scripts will modify the
configuration files, run nodes, and merge result files.
e Exp#1 - Exp#3:

cd scripts

python3 run_scalability_bench.py crest tpcc

python3 run_scalability_bench.py crest smallbank

python3 run_scalability_bench.py crest ycsb
e Exp#4 - Exp#5:

cd scripts

python3 run_breakdown.py crest tpcc

python3 run_breakdown.py crest smallbank

python3 run_breakdown.py crest ycsb
o Exp#6:

cd scripts

python3 run_contentionlevel_bench.py crest ycsb
e Exp#7:

cd scripts

python3 run_sensitivity.py crest ycsb
e Exp#8:

cd scripts

python3 run_write_ratio.py crest ycsb

A.6 Evaluation and expected results

To reproduce the results presented in the paper, follow the
instructions in the README file and §A.5.

Overall performance. This produces results in Exp#1 -
Exp#3, which show CREST’s overall throughput, average
latency, P50 latency, and tail latency (P99 and P999) under
different workloads and scales.

Average latency breakdown. This produces results in
Exp#4, which shows the latency reduction from localized
execution during the execution phase.

Factor analysis. This produces results in Exp#5, which
shows the contribution of CREST’s proposed techniques to
performance gains.

Workload sensitivity. This produces results in Exp#6
- Exp#8, which show CREST’s throughput under varying
conditions of data skewness, a varying number of accessed
records, and a varying write ratio.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Disaggregated Memory Architectures
	2.2 Disaggregated Transaction Processing
	2.3 Motivating Experiments

	3 Design Overview
	4 Cell-level Concurrency Control
	4.1 Record Structure
	4.2 Concurrent Access
	4.3 Resolving Cell Conflicts
	4.4 Discussion

	5 Localized Execution
	5.1 Local Data Management
	5.2 Pipelined Execution

	6 Parallel Commits
	7 Correctness and Overhead Analysis
	7.1 ACID Guarantees
	7.2 Space Overhead
	7.3 RDMA Communication Overhead

	8 Evaluation
	8.1 Implementation
	8.2 Methodology
	8.3 Overall Performance
	8.4 System Analysis
	8.5 Workload Sensitivity

	9 Related Work
	10 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

