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FlexRaft: Exploiting Flexible Erasure Coding for
Minimum-Cost Consensus and Fast Recovery

Mi Zhang , Qihan Kang, and Patrick P. C. Lee

Abstract—Consensus protocols like Paxos and Raft provide data
consistency and fault tolerance for distributed services. Log repli-
cation in these protocols can be supported by erasure coding, which
incurs lower redundancy than full-copy replication and signifi-
cantly saves network and storage costs for overall performance
improvements. However, existing consensus protocols with erasure
coding cannot achieve the minimum network and storage costs
during log replication. We propose FlexRaft, which dynamically
varies the coding scheme used in Raft based on the server status
to always achieve the theoretically minimum redundancy ratio,
while maintaining the same liveness as in Raft. To address the
issue of an inconsistent coding scheme between the leader and its
followers, we specify the prerequisite of overwriting a log entry and
also allow the leader and its followers to exactly track the coding
scheme being used. We further extend FlexRaft into FlexRaft+,
which provides a different storage layout to vary the coding scheme
through a novel technique called re-encoding-free replication, so
as to enable fast server recovery. We prove that both FlexRaft
and FlexRaft+ maintain Raft safety. We implement a prototype
of FlexRaft and FlexRaft+, atop which we build a distributed
key-value store to show its efficacy. Experiments on Alibaba Cloud
show that FlexRaft achieves the theoretically minimum network
and storage costs in practice, and reduces the commit latency by
44.51% and 19.37% compared with state-of-the-art CRaft and
HRaft, respectively. FlexRaft+ further reduces the commit latency
when the coding scheme is being varied and improves the server
recovery performance.

Index Terms—Consensus, erasure coding.

I. INTRODUCTION

CONSENSUS protocols coordinate multiple servers to pro-
vide reliable distributed services [18], [19], [26]. As fail-
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ures are commonplace in distributed environments (e.g., server
crashes, network partitioning, and message loss), consensus pro-
tocols act as a foundation for building distributed systems with
high availability and strong consistency. To protect distributed
services against failures, consensus protocols typically replicate
commands across multiple servers, so that distributed systems
can operate correctly when a minority of servers fail. Paxos [18],
[19] and Raft [26] are two widely adopted consensus protocols
in practical distributed systems [2], [7], [12], [29].

To guarantee strong consistency, consensus protocols record
data operations as log entries and replicate them to all servers
in a group. Each server maintains a log consisting of a sequence
of commands in the same order, such that the state machines
running in different servers can execute the same commands and
output the same results. To tolerate F server failures, consensus
protocols need to replicate log entries in N = (2F + 1) servers.
This incurs 2F times the network traffic from the leader to its
followers andN times the storage cost as each server stores a full
copy of the log entries. The redundancy ratio (i.e., the actual data
size divided by the original data size) of full-copy replication is
N times. Thus, the high redundancy ratio hinders the distributed
systems to achieve low latency and high throughput.

Erasure coding is a well-known low-redundancy approach
to achieving fault tolerance in storage systems. Reed-Solomon
(RS) codes [27] are the most popular erasure codes deployed
in practice. An RS(k,m) code divides a data object into k
fixed-size data chunks, and performs encoding to generate m
parity chunks; note that RS(k,m) is equivalent to full-copy
replication when k = 1. The k +m coded chunks (i.e., data
and parity chunks) are stored in k +m servers. When a server
failure occurs, any k out of the k +m coded chunks suffice
to reconstruct the original content. The redundancy ratio of
RS(k,m) is (k +m)/k, which is only 1/k times compared to
full-copy replication. Thus, erasure coding significantly reduces
network and storage costs.

Recent studies apply erasure coding into consensus protocols
to save network and storage costs for high performance [15],
[25], [31]. RS-Paxos [25] is the first work that adopts era-
sure coding to replicate the log entries in Paxos. To maintain
safety (i.e., never return an incorrect result), RS-Paxos stores
the chunks of a log entry in at least F + k servers, such that
the original data can be recovered from the remaining servers
under F server failures. RS-Paxos trades liveness level (i.e., the
number of tolerable failures) for better performance. To maintain
liveness level F as in the original Raft, CRaft [31] converts to
full-copy replication when there are fewer than (F + k) healthy
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TABLE I
PERFORMANCE OF CRAFT AND HRAFT USING DIFFERENT ERASURE CODING

SCHEMES FOR A GROUP OF FIVE SERVERS (N = 5)

servers. HRaft [15] optimizes CRaft by replenishing some coded
chunks in several healthy servers instead of switching to full-
copy replication directly.

However, existing erasure-coded consensus protocols do not
specify the optimal coding scheme (i.e., the choices of k and
m) to minimize both network and storage costs during log
replication, thereby failing to achieve the lowest redundancy
ratio. The redundancy ratio (k +m)/k depends on the value
of k, as the value of k +m is equal to the number of servers
in a group (i.e., N ) where each server stores a coded chunk of
a log entry. When all servers in a group function correctly, we
can choose the largest available value of k for log replication to
minimize the network and storage costs. However, a larger k also
implies that more servers (i.e.,F + k) are required to store coded
chunks for entry commitment. If we use the coding scheme with
the largest k for log replication at the beginning, the network and
storage costs cannot stay at the minimum when server failures
occur. In the presence of server failures, neither CRaft nor HRaft
achieves the minimum redundancy ratio, as CRaft degrades to
full-copy replication while HRaft needs to store additional coded
chunks in the remaining servers. Thus, existing erasure-coded
consensus protocols cannot maintain the lowest redundancy
ratio during log replication for entry commitment all the time.

Our insight is that the optimal coding scheme for entry
commitment in the consensus protocol has a different value
of k depending on the number of healthy servers in a group.
For example, as shown in Table I in Section II-C, the optimal
coding scheme (marked with a �) for a Raft group of five
servers is RS(3,2) and RS(2,3) when there is zero and one server
failure, respectively. We argue that the coding scheme should
be dynamically varied based on the latest server status (which
can be estimated by heartbeat messages between the leader and
the followers in Raft [26]). In contrast, both CRaft and HRaft

employ a fixed coding scheme during log replication regardless
of the server status.

In this paper, we propose a flexible erasure coding approach
for Raft called FlexRaft, which provably minimizes both net-
work and storage costs to commit log entries. FlexRaft varies the
coding scheme and maintains the lowest redundancy ratio in the
presence of server failures. It sets k as large as possible based on
the number of healthy servers in a group. However, the varying
coding scheme requires overwriting the coded chunks of a log
entry with the new ones, thereby raising new consistency issues
between the leader and its followers: (i) for the same log entry,
the chunk stored in a follower can be mistakenly overwritten by
an old coded chunk, and (ii) some followers may not successfully
update the old chunks before the log entry is committed. Thus,
FlexRaft specifies the prerequisite of overwriting a log entry, and
modifies the AppendEntries RPCs (i.e., the commands initiated
by the leader to replicate log entries (with arguments) or provide
heartbeats (without arguments)) to ensure that the chunks stored
in the followers are encoded with the same coding scheme as the
leader. We consider how to recover a failed server and prove the
safety of FlexRaft. We summarize our contributions as follows.
� We analyze the optimal coding scheme for consensus pro-

tocols under a different number of server failures. We show
that given N ′ healthy servers in a Raft group (N ′ ≤ N ),
the coding scheme with k = N ′ − F achieves the lowest
redundancy ratio while keeping the liveness level F .

� We propose FlexRaft to dynamically vary the coding
scheme used for log replication in the Raft protocol based
on the server status. To guarantee that the leader and its fol-
lowers use the same coding scheme for a log entry, FlexRaft
adds a restriction rule to avoid mistakenly updating a coded
chunk in a follower, and also updates the AppendEntries
RPCs so that the leader can exactly track the coding scheme
of the stored chunks.

� We further extend FlexRaft with re-encoding-free log repli-
cation, referred to as FlexRaft+. FlexRaft+ provides a
different storage layout to vary the coding scheme, so as
to enable fast server recovery. We prove that both FlexRaft
and FlexRaft+ guarantee Raft safety while maintaining the
same liveness level F as Raft.

� We implement FlexRaft in C++ and build a distributed
key-value store using RocksDB [6] atop FlexRaft. Exper-
iments on Alibaba Cloud [1] show that FlexRaft reduces
the commit latency by 44.51% and 19.37%, respectively,
compared with CRaft and HRaft under two server failures
for a group of seven servers. FlexRaft+ further reduces
the commit latency of FlexRaft by 21.71% when a server
failure occurs.

The source code of our FlexRaft prototype is now available
at: https://github.com/ACS-Storage-Group/FlexRaft-Code.

II. BACKGROUND AND MOTIVATION

A. Basics of Raft Consensus

We first provide the background details of Raft [26]. We
consider a Raft group of N = (2F + 1) servers that can tolerate
any F server failures (F ≥ 1). Each server is in one of the
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following three states: leader, follower, and candidate. In a
normal situation, there is one leader in a Raft group and the
remaining servers are followers. The leader handles all client
requests and replicates log entries (i.e., the operations being
executed); the followers respond to the requests from the leader
and candidates, and redirect the client requests to the leader; the
candidate state is used to elect a new leader. Raft divides time
into terms, numbered with consecutive integers, and each term
starts with a leader election.

Raft adopts a strong form of leadership to simplify the man-
agement of log replication. The leader accepts log entries from
clients and replicates them to other servers in the same Raft group
by sending AppendEntries RPCs. Each log entry tracked by an
index (a monotonically increasing number) stores an update to
the state machine along with the term number when the leader
receives the update. When a log entry is replicated to a majority
of servers, the leader commits and applies the log entry and
its previous log entries, and informs the followers to apply the
log entries. Raft guarantees leader completeness property that
the leader at any term has all committed entries in the previous
terms.

B. Erasure-Coded Consensus Protocols

RS-Paxos [25] is the first protocol to combine erasure coding
and consensus to reduce both network and storage costs. It
divides the original data of a log entry into k chunks with
equal sizes and encodes the k chunks into m parity chunks
(k > 1,m ≥ 1) using RS(k,m). It then sends one chunk to each
acceptor for log replication. Any k chunks of data and parity
chunks can reconstruct the original log entry. As the chunk size
is a fraction (i.e., 1/k < 1) of the total data size, RS-Paxos saves
the network bandwidth cost and disk IOs. RS-Paxos is actually
a superset of the vanilla Paxos [18], [19]. It requires that the
intersection between the write quorum Qw and read quorum Qr

should be not less than k to guarantee safety; that is, RS-Paxos
should satisfy Qr +Qw −N ≥ k when using RS(k,m) for
storing log entries, such that at least k chunks can be read
from Qr servers to recover the original data. With a larger k,
it achieves more network and storage savings, but puts a higher
requirement on the write and read quorum. Thus, compared to
the vanilla Paxos using full-copy replication, RS-Paxos tolerates
fewer failed servers (< F ) in a group of N = (2F + 1) servers.

CRaft [31] extends Raft with erasure coding like RS-Paxos,
while maintaining the same liveness level (i.e., the number of
failed servers tolerable by a protocol) as Raft. To address the
liveness problem of RS-Paxos (i.e., tolerating fewer than F
failures), CRaft uses erasure coding and full-copy replication
jointly. When at least F + k servers are running normally in a
Raft group, CRaft uses RS(k,m) for log replication to reduce
network and storage costs; otherwise, it switches to full-copy
replication and keeps the liveness level F (i.e., CRaft switches
to full-copy replication when the number of failed servers is
larger than N − F − k). Although CRaft maintains the same
liveness as the original Raft, switching to full-copy replication
for log replication causes sharp performance degradation when
the number of healthy servers reduces to less than F + k. Fig. 1

Fig. 1. Both CRaft and HRaft use RS(3,2) for log replication in a group of five
servers (N = 5). When one server fails, CRaft switches to full-copy replication
while HRaft replenishes the missing chunk.

shows that CRaft switches from RS(3,2) to full-copy replication
when one server fails in a group of five servers. Note that
the leader in CRaft keeps a whole copy of each log entry for
efficient reads (same for HRaft [15] as well). When a leader is
newly elected in CRaft, the new leader performs a LeaderPre
operation to deal with any unapplied coded chunk (i.e., not yet
applied to the state machine) before the leader fully functions.
During the LeaderPre operation, the leader attempts to recover
any unapplied entries in sequence by collecting other coded
chunks from its followers, and deletes the entries that cannot
be recovered.

HRaft [15] mitigates the sharp performance degradation in
CRaft by replenishing some coded chunks in several healthy
servers when failures occur. It adjusts the placement of the coded
chunks and replicates some coded chunks to healthy servers
instead of switching to full-copy replication if the number of
failed servers is greater than N − F − k. When the leader
receives p (F ≤ p ≤ F + k − 1) acknowledgments during log
replication (i.e., there are (N − 1− p) failed servers), it chooses
(F + k − 1− p) coded chunks and replicates them toF healthy
servers before committing a log entry. In other words, some
servers store multiple coded chunks of a log entry to guarantee
safety (i.e., retrieving enough chunks for data reconstruction).
Fig. 1 shows that HRaft stores the missing chunk in two servers
under one server failure when N = 5. Although HRaft avoids
switching to full-copy replication, HRaft cannot always maintain
the minimum storage and network costs during log replication.

C. Motivating Example

We compare the network and storage costs of CRaft and HRaft
with different erasure coding schemes under a different number
of server failures. We use a group consisting of five servers
(N = 5), which can tolerate at most two server failures (F = 2).
The network cost is the bandwidth usage from the leader to its
followers for a log entry to be committed. As the leader stores a
full copy of the log, the storage cost is equal to the network cost
plus one [31].

Table I shows the network and storage costs of CRaft and
HRaft with different coding schemes where k ranges from 1 to
3. Here, we denote full-copy replication by k = 1. In the normal
case that no server fails (i.e., f = 0), CRaft and HRaft introduce
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the same network and storage costs when using the same coding
scheme. Both CRaft and HRaft achieve the minimum network
and storage costs with the largest k (i.e., k = 3) among all
three coding settings. When using RS(3,2) for log replication,
the network and storage costs are 4/3 and 7/3, respectively.
If one server fails (i.e., f = 1), CRaft with k = 3 switches to
full-copy replication as the number of healthy servers in the
group is less than (F + k) (i.e., 5). The network and storage
costs of CRaft sharply increase to 3 and 4, respectively, the
same as the original Raft. Under one server failure, HRaft with
k = 3 still uses RS(3,2) while storing two coded chunks in two
servers (denoted by RS(3,2)+). The network and storage costs of
HRaft gradually increase to 5/3 and 8/3, respectively, lower than
those of CRaft with k = 3 but higher than CRaft/HRaft with
k = 2. For k = 2, both CRaft and HRaft can use RS(2,3) for
log replication, which incurs the minimum network and storage
costs (i.e., 3/2 and 5/2, respectively). When two servers fail
(i.e., f = 2), CRaft with k = 2 and k = 3 switches to full-copy
replication, while HRaft needs to store more coded chunks to
keep the liveness level F . For CRaft and HRaft under two server
failures, the network and storage costs are 2 and 3, respectively,
equal to that of the original Raft. Thus, the largest k does not
guarantee the minimum network and storage costs in all cases;
for example, RS(2,3), rather than RS(3,2), incurs the lowest
network and storage costs when one server fails. Although HRaft
avoids switching to full-copy replication in the presence of server
failures, it fails to achieve the minimum network and storage
costs using a coding scheme with a fixed k.

III. DESIGN OF FLEXRAFT

FlexRaft dynamically adjusts the coding scheme for log repli-
cation according to the cluster status, so as to minimize both the
network and storage costs while maintaining the liveness level
F . We first describe the choice of coding schemes in FlexRaft
(Section III-A). We then explain the issues raised by varying
coding schemes and how FlexRaft addresses them (Section
III-B). We further optimize FlexRaft (called FlexRaft+) to re-
alize a re-encoding-free log replication under server failures
(Section III-C). Finally, we introduce how FlexRaft and
FlexRaft+ deal with server recovery (Section III-D) and provide
the safety and liveness level guarantee (Section III-E).

A. Choice of Coding Schemes

We first define the terminologies and notations. We consider
a Raft group of N servers, where N = 2F + 1, so as to tolerate
up to F failures. Let N ′ be the total number of healthy servers in
the group (i.e., the servers are alive and can communicate with
each other and the clients [31]), and f be the number of server
failures (i.e., N ′ = N − f ). When a Raft group starts to work,
all servers belonging to the group are healthy and the number
of healthy servers is equal to the total number of servers in the
group (i.e., N ′ = N and f = 0). The number of healthy servers
decreases when some servers crash or lose network connection,
or increases when the failed servers rejoin the group or some
new servers are added to replace the failed servers. Currently, we
consider a Raft group of a fixed size where N does not change.

TABLE II
CODING SCHEME USED IN FLEXRAFT TO MINIMIZE NETWORK AND STORAGE

COSTS UNDER A DIFFERENT NUMBER OF SERVER FAILURES

The Raft leader can estimate the number of healthy servers and
update the value of N ′ based on the exchanges of the latest
heartbeat messages with its followers.

Coding scheme chosen by FlexRaft: To minimize both the
network and storage costs, FlexRaft dynamically chooses the
coding scheme based on the number of healthy servers remaining
in a group. Given N ′ healthy servers, FlexRaft uses RS(k,m)
code where k = N ′ − F (i.e., N − f − F ) and m = N − k
for log replication. Here, we make k +m = N , so that each
server in the group can store a coded chunk (either original data
chunk or parity chunk) of a log entry. Note that k = 1 means
that FlexRaft uses full-copy replication. FlexRaft chooses the
available largest value of k (i.e., N ′ − F ) given the number of
healthy servers N ′, so as to replicate a log entry with the lowest
redundancy ratio. We prove that FlexRaft always minimizes the
network and storage costs for log replication below.

Theorem 1: When there are N ′ (F + 1 ≤ N ′ ≤ N ) healthy
servers in a Raft group, FlexRaft always minimizes the network
and storage costs for log replication.

Proof: To maintain safety, at least F + k servers should store
the chunks of a log entry before it can be committed, such that
there are at least k chunks in any F + 1 servers [25], [31]. When
N ′ healthy servers exist in a Raft group, at most N ′ servers store
the chunks of a log entry to commit (i.e., F + k ≤ N ′). Thus,
Raft can use RS(k,m), where k ≤ N ′ − F , for log replication.
The redundancy ratio of RS(k,m) is N ′/k. As the network and
storage costs decrease with the reduction of the redundancy ratio,
a larger value of k incurs lower storage and network overhead
given a fixed N ′. Thus, FlexRaft always minimizes the network
and storage costs for log replication by using the largest available
value of k (i.e., k = N ′ − F ). �

Table II shows the coding schemes, log replication methods,
network cost, and storage cost of FlexRaft under a different
number of server failures where f increases from 0 to F . Under
f server failures, FlexRaft uses a coding scheme with k = N −
f − F for log replication where the network cost is (N − f −
1)/k and the storage cost is (N − f − 1)/k + 1. Note that the
network and storage costs increase with the number of server
failures. WhenF servers fail, the only method for log replication
is full-copy replication.

Comparison to CRaft and HRaft: FlexRaft always achieves
the minimum redundancy ratio, introducing lower network
and storage costs than CRaft and HRaft. When the number
of healthy servers N ′ is equal to or greater than F + k, all
protocols can employ RS(k,m) for log replication, where the
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network cost is (N ′ − 1)/k. Suppose that we have Δf addi-
tional failed servers, such that the number of healthy servers
N ′ is now less than F + k (i.e., N ′ = F + k −Δf ). The three
protocols take different approaches to maintain the liveness
level F : i) CRaft switches to full-copy replication, where the
network cost increases to 2F − f [31]; ii) HRaft keeps using
RS(k,m) and stores additional copies of some coded chunks,
where the network cost is (2F − f + F (f −N + F + k))/k
[15]; iii) FlexRaft reduces the value of k based on the failure
status and uses RS(k −Δf,m) (for k −Δf ≥ 1), where the
network cost is (F + k −Δf − 1)/(k −Δf). Compared to
the network cost when there are (F + k) healthy servers (i.e.,
(F + k − 1)/k), the increased cost of HRaft is Δf(F − 1)/k,
while that of FlexRaft is Δf(F − 1)/(k(k −Δf)). Since we
have k −Δf ≥ 1, the increment of FlexRaft is less than that of
HRaft. Also, as HRaft incurs less network traffic than CRaft [15],
the network cost of FlexRaft is less than that of CRaft as well.
Moreover, as the storage cost equals the network cost (from the
leader to its followers) plus the storage cost of a full copy in
the leader, the storage cost of FlexRaft is also less than those of
CRaft and HRaft.

B. Varying the Coding Scheme

The main idea of FlexRaft is to choose the optimal coding
scheme for log replication based on the cluster status. When
failures occur during writes, FlexRaft adjusts the value of k if
there are not enough servers storing the log entries.

Varying the coding scheme during log replication: When
FlexRaft decides to vary the coding scheme for a log entry, the
leader needs to re-encode the entry with the new coding scheme
and send the new chunks to its followers. At the beginning
of replicating a log entry, FlexRaft first performs encoding on
the data using an initial coding scheme RS(k,m), where k is
determined by the latest N ′ (Section III-A). Then the leader
distributes the coded chunks to the followers and waits for the
responses from the followers. Here, we map the chunk ID to the
server ID consistently to determine which server should store
which chunk for a log entry. When a follower receives a chunk
from the leader, the follower appends the chunk to its log and
returns a successful response to the leader. The leader collects
the responses from the followers and decides how to perform log
replication. If the leader receives at least F + k − 1 successful
responses, it continues to commit the log entry; otherwise, the
leader varies the coding scheme to maintain safety since there
are fewer than F + k − 1 healthy followers for storing the log
entry. FlexRaft then updates N ′ based on the responses from
the followers and switches from the initial coding scheme to
the new coding scheme RS(k′,m′) where k′ = N ′ − F and
m′ = N − k′. The leader re-encodes the log entry using the
new coding scheme, and sends the new chunks to its followers.
Each follower overwrites the old chunks with the new chunks.
If the leader receives at least F + k′ − 1 successful responses,
it can commit the log entry; otherwise, the leader continues
to adjust the coding scheme by decreasing the value of k and
performs the above process until it successfully replicates the log
entry. The smallest value of k is one (i.e., full-copy replication).

Fig. 2. The coding scheme varies during log replication in a group of five
servers (N = 5).

Fig. 2(a) shows how the coding scheme varies during log
replication in a Raft group of five servers. At the beginning,
the leader S0 encodes the log entry using RS(3,2) and sends
four chunks to its followers. However, the leader only receives
three responses from servers S1, S2, and S4, since S3 does not
receive any chunk (e.g., due to network failures). The leader S0

then varies the coding scheme to RS(2,3), re-encodes the log
entry, and sends the new chunks to its followers. The followers
S1 andS2 overwrite the old chunk with the new chunk,S3 stores
the new chunk directly, and S4 does not store the new chunk as it
now crashes. After receiving successful responses from servers
S1, S2, and S3, the leader S0 can commit this log entry safely.
However, varying the coding scheme raises new challenges to
the correctness of log replication.

Challenge 1: the chunk in a follower can be mistakenly
overwritten by an old chunk of the same log entry: As the coding
scheme varies during log replication in FlexRaft, the servers in
a group may store the chunks encoded with different coding
schemes for a log entry. Thus, the chunk stored in a follower
may be an old one due to chunk overwrites. For example, as
shown in Fig. 2(b), the followers S1, S2, and S3 are expected
to store the new chunks c′1, c′2, and c′3, respectively, after the
re-encoding with RS(2,3). However, due to network delays, the
request containing the old chunk c3 reaches the followerS3 after
S3 stores the new chunk c′3.S3 then overwrites c′3 with c3, but the
leader has received a successful response from S3 that it stores
c′3. In this case, the chunk stored in a follower is inconsistent with
that stored in the leader; in other words, the chunks belonging to
a log entry are now encoded by different coding schemes. Thus,
FlexRaft should guarantee that the chunks of a log entry stored
in the followers are encoded with the same coding scheme as
specified by the leader.

Prerequisite of overwriting a log entry: To avoid mistakenly
overwriting a chunk in a follower, FlexRaft requires the follower
to check the value of k with the chunk before overwriting a log
entry: if the value of k with the new chunk is less than the current
value of k, the follower overwrites the current chunk with the
new one and responds to the leader; otherwise, the follower can
ignore this message containing the new chunk. The reason is
that the value of k always decreases when the coding scheme
varies during log replication, and the new chunk to overwrite is
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Fig. 3. Responses of varying coding schemes during log replication in a group
of five servers (N = 5).

encoded from a coding scheme with a smaller k. Thus, in Fig. 2,
if the follower S3 compares the value of k with the chunk c3
(i.e., k = 3) to the one with the chunk c′3 (i.e., k = 2), it will
refuse to update the current chunk and the above inconsistent
case will not occur.

Challenge 2: some followers may not overwrite the old chunks
successfully before the leader commits the log entry. Although
each follower checks the value of k before overwriting its
chunks, the chunks stored in the follower may still use a different
coding scheme from the leader’s. One possible case is that
the leader requires the followers to overwrite their existing old
chunks, yet some followers fail to replace the old chunks with
the new chunks. Fig. 3 depicts such an example in a group
of five servers (N = 5). The leader S0 encodes a log entry
with RS(3,2) and sends the coded chunks to its followers. All
followers store the chunks successfully and return successful
responses to the leader. However, the follower S3’s response
does not reach the leader in time (e.g., due to network failures).
The leader S0 only receives three successful responses from S1,
S2, andS4 before it decides to vary the coding scheme. Thus, the
leader S0 re-encodes the log entry with RS(2,3) and distributes
the new chunks to the followers. As the AppendEntries RPC
from the leader to the follower S3 is lost and the follower S4

crashes this time, only the followers S1 and S2 overwrite the
old chunks with the new chunks and return successful responses
to the leader again. However, the leader S0 mistakenly thinks
that three followers have stored the new chunks and treats log
replication as successful, since it also receives the last successful
response from S3. That is, the new chunks being re-encoded
are stored in only two followers, while S3 still stores the old
chunk. The main reason is that the successful response from a
follower to the leader in Raft, which consists of the currentTerm
and a true flag if the follower contains the entry matching the
index of the previous log entry (i.e., preLogIndex) and the term
of prevLogIndex entry (i.e., prevLogTerm), fails to indicate
which server stores which coded chunk. Thus, the leader cannot
distinguish the exact number of stored chunks belonging to the
same coding scheme for a log entry from the responses of the
followers.

Updating AppendEntries RPCs: To make a follower’s log stay
consistent with the leader’s, we add prevK (i.e., the value of

Fig. 4. Code conversion to the optimal coding scheme for the minimum storage
overhead. When server S2 gets recovered, the coding scheme switches from
RS(2,3) to RS(3,2).

k of the prevLogIndex entry) and ChunkInfo (i.e., a tuple of
the log index and the value of k) to the AppendEntries RPCs.
We include prevK in the request of the AppendEntries RPCs to
allow a follower to detect the chunks encoded with a different
coding scheme. When receiving an AppendEntries RPC request,
the follower checks the value of prevK after checking the term
and prevLogTerm. If the follower finds that the value of k of
the entry in prevLogIndex does not match prevK (i.e., storing
a chunk encoded with an old coding scheme), the follower can
return false; the leader then decrements nextIndex and retries
to send AppendEntries RPCs. For example, when S3 rejoins
the group as a follower, it can compare prevK and find that
the old chunk c3 should be overwritten. Moreover, we include
the ChunkInfo of the log entries in the requests and responses of
the AppendEntries RPCs. Thus, the leader sends log entries con-
taining ChunkInfo (included in each log entry) to the followers
and each follower responds to the leader with the ChunkInfo of
the chunks stored, such that the leader can determine whether the
chunks encoded with the latest coding scheme have been stored
in enough followers. For example, by checking the ChunkInfo
in the received responses, the leader S0 in Fig. 3 can find that
one response should not be accounted as a successful response
to replicate the new chunks, as the chunk c3 rather than the
new chunk c′3 is stored in S3. Thus, the leader will decrease the
value of k (i.e., reducing to full-copy replication) and retry to
replicate the log entry. Thus, by adding prevK and ChunkInfo to
the AppendEntries RPCs, FlexRaft guarantees that the chunks
belonging to a committed log entry are encoded with the same
coding scheme and correctly and safely stored in the followers.

C. Log Replication Under Server Failures

Code conversion for the long-term minimum storage over-
head: The minimum redundancy ratio is achieved with RS(F +
1, F ) code when all servers in the group are healthy. Although
FlexRaft minimizes the network and storage costs by varying the
coding scheme during log replication, the log entries committed
in the presence of server failures are encoded with a smaller
k than F + 1. To further reduce the storage cost in the long
term, we can convert the log entries stored with a smaller k to
the RS(F + 1, F ) code when all servers are healthy (N ′ = N ).
It needs to re-encode log entries and update the chunks stored
in all servers, which inevitably introduces additional encoding
overhead and a large amount of network traffic. Fig. 4 shows the
process of code conversion in a group of five servers (N = 5).
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Fig. 5. An example of re-encoding-free log replication under one server failure
in a group of five servers (N = 5), which maintains the minimum network and
storage costs when varying the coding scheme directly.

FlexRaft uses RS(2,3) for log replication under one server failure
(e.g., server S2 crashes), where each chunk is half of the original
log entry size. Note that we do not show the chunk that should
be stored in the leader S0, since the leader stores a full copy of
each log entry for log replication and answering client requests.
When server S2 is recovered, each follower needs to change
the stored chunk (framed in red) as the coding scheme varies
from RS(2,3) to RS(3,2) to achieve the minimum redundancy
ratio. The leader S0 needs to perform re-encoding with RS(3,2)
and distribute the new chunks to its followers. That is, the code
conversion process needs to re-encode and distribute the new
chunks, thereby incurring additional computation overhead and
increasing the network cost by (N − 1)/(N − F ). Thus, such
code conversion incurs additional re-encoding overhead and
network traffic for long-term storage savings.

Re-encoding-free log replication under server failures: To
reduce the code conversion overhead during server recovery, we
propose re-encoding-free log replication under server failures
and call the extension FlexRaft+. By re-encoding-free, we mean
that FlexRaft+ does not need to perform re-encoding to switch
to the optimal coding scheme when all servers in the group
are healthy. The key idea of FlexRaft+ is to keep the optimal
coding scheme unchanged when some servers fail, by storing the
missing chunks (i.e., the chunks that should be stored in the failed
servers) with erasure coding. Unlike FlexRaft, which directly
varies the coding scheme with a decreasing k, FlexRaft+ adds
some additional coded chunks to replace the missing chunks
to maintain the same liveness level and the lowest redundancy
ratio. Note that some existing code conversion techniques [21],
[22], [23], [32] in distributed storage systems consider how to
reduce the bandwidth and I/O during code conversion, they
do not consider how code conversion is applied to consensus
protocols.

Fig. 5 shows an example of re-encoding-free log replication
in a group of five servers when one server S2 fails. The healthy
followers still store the chunks encoded with the optimal coding
scheme RS(3,2), i.e., servers S1, S3, and S4 store chunks d1, p0,
and p1, respectively. For the chunk d2 that should be stored in
the failed server S2, FlexRaft+ encodes the chunk with RS(2,2)
and distributes the new coded subchunks (i.e., generated from
a chunk) to the remaining healthy servers. That is, FlexRaft+
divides d2 into two subchunks d20 and d21, computes two parity

Fig. 6. An example of re-encoding-free log replication under a different
number of server failures in a group consisting of seven servers (N = 7).

subchunks p20 and p21, and stores the four subchunks in the
remaining four servers. As the leader S0 already stores the full
copy of the log entry, we do not need to store additional chunks
and subchunks in the leader. The network traffic of encoding
d2 under RS(3,2) equals that of converting to RS(2,3) directly.
When server S2 is recovered, FlexRaft+ only needs to restore
chunk d2 in S2 and remove the subchunks for encoding d2 in
other servers, so it avoids modifying the chunks stored in all
servers.

FlexRaft+ maintains the same liveness level and the lowest
network and storage costs during log replication as varying the
coding scheme directly in FlexRaft, while enabling a fast server
recovery. In a group of N (N = 2F + 1) servers, FlexRaft+
always adopts the optimal coding scheme (i.e., RS(F + 1, F ))
for log replication and stores each missing chunk with RS(F +
1− f, F )under f server failures. We prove that FlexRaft+ main-
tains Raft safety and liveness level with the same redundancy
ratio as FlexRaft in Section III-E. Fig. 6 shows how FlexRaft+
performs log replication under a different number of server
failures in a group of seven servers (N = 7). When there is
no server failure (f = 0), FlexRaft+ only needs to store the
chunks encoded with the optimal coding scheme RS(4,3). If
one server S2 fails, FlexRaft+ encodes the missing chunk d2
with RS(3,3) and stores the coded subchunks. Under two server
failures (f = 2), FlexRaft+ stores the additional subchunks en-
coded with RS(2,3) for the missing two chunks d2 and d3. When
three servers in the group fail, FlexRaft+ replicates the missing
chunks in the remaining healthy servers, as RS(1,3) actually
means 4-way replication. In this way, FlexRaft+ can directly
recover the failed server and use the optimal coding scheme
when all servers are healthy. When generating the subchunks
under server failures, FlexRaft+ needs to perform additional
encoding operations, which slightly increase the write latency
(as shown in Figs. 9 and 10). Thus, FlexRaft+ makes a trade-off
between server recovery performance and write latencies.

Compared to HRaft, FlexRaft+ takes a different approach
to store the missing chunks under server failures. FlexRaft+
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Fig. 7. Write latency in normal cases when N = 5.

Fig. 8. Write latency in normal cases when N = 7.

Fig. 9. Write latency under one server failure when N = 5.

Fig. 10. Write latency under some server failures when N = 7.

encodes the missing chunks with a proper coding scheme to keep
the lowest redundancy ratio of FlexRaft, while HRaft replenishes
the missing chunks with replication and hence introduces a
higher redundancy ratio. Thus, FlexRaft+ can achieve the lowest
network and storage costs under a different number of server
failures.

D. Server Recovery

Handling leader failures: When the current leader fails, the
process of leader election starts and a new leader is elected.
For the committed log entries, the newly elected leader has at
least one chunk according to Raft election rules [26], and the
leader can recover the complete log entry by collecting other

chunks from its followers since we require that anyF + 1 servers
store k chunks. For the unapplied entries, the new leader should
perform the LeaderPre operation (Section II-B) before it can
become a fully-functioning leader [31]. Note that the chunks
stored in the new leader may not use the same coding scheme
when the log entries are committed, even though the leader’s
log is up-to-date. To deal with this issue, the leader recovers
the entries among (commitIndex, lastLogIndex], i.e., the entries
between the highest index of log entry known to be committed
and the index of the last log entry, and replaces the chunks with
the complete log entries during the LeaderPre operation. As the
leader stores the ChunkInfo for each log entry, the leader can
decide whether a log entry is recoverable based on the value of
k. For those entries that cannot be recovered, the leader removes
them from the log. The leader can process the client requests
normally after the LeaderPre operation.

A newly elected leader may need to perform the decoding
operation when serving read requests to an object. If the leader
only has a coded chunk for a data object to be read, the leader
needs to retrieve other coded chunks to decode the original
object. The leader then stores a full copy of the recovered object
for further reads to avoid decoding every time. That is, the leader
handles multiple reads to an object with at most one decoding
operation. Note that CRaft and HRaft perform the same read
procedure as FlexRaft and FlexRaft+. These Raft protocols with
erasure coding make a trade-off between the network and storage
costs during commitment and the computation overhead during
reads.

Recovering a failed follower in FlexRaft and FlexRaft+:
When a server resumes normally, FlexRaft restores the com-
mitted log entries with the same coding scheme (i.e., the same
value ofk) to avoid code conversion while FlexRaft+ can directly
restore the chunks encoded with the optimal coding scheme. For
a committed log entry, the recovery costs of both FlexRaft and
FlexRaft+ are 1/k of the original data size, but FlexRaft with a
smaller value of k incurs higher storage and network costs than
FlexRaft+. FlexRaft+ can then remove the subchunks encoded
for the missing chunks directly. Both FlexRaft and FlexRaft+
guarantee that the recovered server stores all previous log entries
before it is counted as a healthy server to function. After the
recovery process completes, FlexRaft and FlexRaft+ increase
the number of healthy servers (i.e., N ′), and vary the coding
scheme accordingly to replicate log entries later.

E. Safety Guarantee

We first show that FlexRaft guarantees Raft safety by proving
the Log Matching Property and the Leader Completeness Prop-
erty. We then prove that FlexRaft+ also maintains Raft safety
and the same liveness level with the same redundancy ratio as
FlexRaft.

Theorem 2: Log Matching Property: if two logs contain an
entry with the same index and term, then the logs are identical
(either a full copy or a coded chunk of the original proposed
data) in all entries up through the given index.

Proof: The original Raft protocol maintains two properties
to constitute the Log Matching Property: 1) if two entries in
different logs have the same index and term, then they store the
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same command, and 2) if two entries in different logs have the
same index and term, then the logs are identical in all preceding
entries. The first property stands because a leader creates at most
one entry with a given log index in a given term, and log entries
never change their position in the log. FlexRaft works as in
Raft, although it varies the coding scheme when the server status
changes. The coded chunk stored with the same index and term
may use an old coding scheme (which will be updated during
processing AppendEntries RPCs and the LeaderPre phase), but
stands for the same command. The second property in Raft is
guaranteed by a simple consistency check performed by the
AppendEntries RPCs. FlexRaft also follows the AppendEntries
RPC rules in the original Raft protocol. When the coding scheme
varies for the entry with the same index and term, FlexRaft adds
a restriction rule to avoid mistakenly overwriting a log entry,
and includes prevK and ChunkInfo in the AppendEntries RPCs
to make the followers use the same coding scheme as the leader.
Thus, the Log Matching Property still holds where the data is a
coded chunk when using erasure coding for the log entry. �

Theorem 3: Leader Completeness Property: if a log entry is
committed in a given term, then that entry will be present in the
logs of the leaders for all higher-numbered terms.

Proof: As FlexRaft extends the LeaderPre operation in CRaft,
CRaft guarantees that if a log entry e is committed in a given
term, then e will be present in the logs of the leaders for
all higher-numbered terms, and e will not be deleted in any
higher-numbered term’s LeaderPre [31]. We then prove that the
committed data is recoverable using the right coding scheme
in FlexRaft. For each committed entry, FlexRaft guarantees that
there are at least F + k coded chunks stored in the cluster. Thus,
the leader can always recover a committed entry by collecting k
chunks from other servers. Therefore, the Leader Completeness
Property stands in FlexRaft. �

Theorem 4: FlexRaft+ maintains Raft safety and the liveness
level (F ) with the same redundancy ratio as FlexRaft.

Proof: We first prove that FlexRaft+ has the same redundancy
ratio as FlexRaft. Compared to FlexRaft, FlexRaft+ keeps the
optimal coding scheme RS(F + 1, F ) and stores each missing
chunk with RS(F + 1− f, F ) instead of directly switching to
RS(F + 1− f, F )underf server failures. For simplicity, we de-
note F + 1 and F + 1− f by k and k′, respectively. The redun-
dancy ratio of FlexRaft with RS(k′, F ) is k′+F

k′ . For FlexRaft+,
the redundancy ratio depends on two parts: the original chunks
encoded with RS(k, F ) and the subchunks added for the missing
chunks. Assuming the log entry size is one, each original chunk
size is 1

k and each subchunk size is 1
k · 1

k′ . The redundancy ratio
is equal to the total data size divided by the log entry size, i.e.,
( 1k · (k + F − f) + 1

k · 1
k′ · (k′ + F ) · f)/1 = k′+F

k′ . Thus, the
redundancy ratio of FlexRaft+ is also k′+F

k′ , which equals that
of FlexRaft.

To prove that FlexRaft+ maintains Raft safety and the same
liveness level F as FlexRaft, we only need to prove that
FlexRaft+ can recover the original log entry under any F server
failures. That is, FlexRaft+ also achieves the liveness level F by
tolerating any F server failures. We first prove that FlexRaft+
can recover the f missing chunks (i.e., encoded with RS(k, F ))
under any F server failures. As each missing chunk is encoded

with RS(k′, F ), there are at least k′ subchunks left under any
F server failures, which are sufficient to recover each original
missing chunk. We then show that FlexRaft+ can recover the
complete content of any committed Raft log entry. Suppose that
a log entry is stored in N ′ (N ′ = N − f ) servers before the
entry is committed. When at most F server failures occur, there
are at least N ′ − F = k′ alive servers where each server stores
one chunk and f subchunks. According to the above proof,
we can successfully reconstruct the f missing chunks. Given
k′ chunks stored in the alive servers and f recovered chunks,
we can gather at least k′ + f = k′ + (k − k′) = k chunks that
are encoded with RS(k, F ), which enables the recovery of the
original log entry. Thus, FlexRaft+ maintains Raft safety and
the liveness level F , while having the same redundancy ratio as
FlexRaft. �

IV. IMPLEMENTATION

We implement a prototype of FlexRaft from scratch in C++
and also support FlexRaft+ with some modifications of FlexRaft.
We leverage the ISA-L library [4] for erasure coding operations
and use RCF 3.0 [5] for interprocess communication. To evaluate
FlexRaft, we also build a distributed key-value store based
on RocksDB v7.3.1 [6]. Each server has a constantly running
FlexRaft module, a RocksDB engine as a state machine, and a
background working thread to apply committed entries to the
state machine. The whole system contains about 6K LoC.

Log entry: We modify the structure of the log entry by adding
an EntryType flag and the ChunkInfo, a tuple of (log index, k).
The EntryType flag in a log entry’s metadata indicates whether
the command in this entry is a complete copy or a coded chunk. If
this entry is encoded, the ChunkInfo identifies the coded chunk
uniquely, where k is the encoding parameter used for this entry.

Log replication and commitment: The leader determines the
coding scheme for log replication by counting the number of
healthy servers. The leader sends heartbeat messages (i.e., empty
AppendEntries RPCs) to its followers every 100 ms. To track
the server status, the leader records the time point when it
receives RPC messages (RPC requests and responses) from other
servers. If the leader detects that some servers have not sent any
messages for some time (e.g., 200 ms), the leader considers these
servers as unhealthy and determines the encoding parameter
by k = N ′ − F . The leader then encodes the original data into
k +m chunks, sends the coded chunk to each healthy follower
using AppendEntries RPCs, and waits for responses from the
followers. If the leader receives more than F + k − 1 success
responses within a configured time limit (e.g., 1 s), the leader
checks the ChunkInfo in the responses and commits this entry
if at least F + k servers (including itself) successfully store this
entry. Otherwise, the leader decreases the encoding parameter k
by one, re-encodes the entry, and repeats the above process until
the log entry gets committed.

Processing in followers: Upon receiving an AppendEntries
request, the follower checks the metadata of this entry to decide
whether to store it or not. For the entry that has the same term and
index as the latest one stored in the follower’s log, the follower
overwrites the old entry using the newly-received one only if the
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new entry is encoded with a smaller k; otherwise, the follower
ignores this request. The follower overwrites the old entries by
trimming its log and appending the new entries. If the log entry
has a different term or index, the follower appends the new
entry. After storing the log entry, the follower returns a response
containing the ChunkInfo to the leader.

FlexRaft+ implementation: We implement FlexRaft+ by mak-
ing some modifications to FlexRaft. For FlexRaft+, each log
entry carries both the original chunk and added subchunks. Each
subchunk is labeled by SubChunkInfo, a tuple consisting of
ChunkId that presents which chunk the subchunk is encoded
from and SubChunkId that marks the position of the subchunk
in its stripe. For example, the subchunk d21 in Fig. 5 can be
uniquely identified by SubChunkInfo of (2, 1), meaning that
this subchunk is encoded from the chunk d2 and it is the second
subchunk belonging to the substripe encoded with RS(2,2). Each
SubChunkInfo consists of two 4-byte integers (i.e., ChunkID and
SubChunkID), accounting for a total of 8 bytes of storage space.
The number of subchunks (and SubChunkInfo) contained in one
AppendEntries RPC is equal to the number of failed servers
during log commitment. For example, for the failure cases where
f = 1, 2, 3, the leader incurs 8, 16, and 24 bytes of extra space,
respectively, in each AppendEntries RPC call. The extra payload
size is negligible (less than 1%) to the AppendEntries RPC
call. We leverage the field ChunkInfo introduced in FlexRaft
to indicate the change of coding scheme. If the leader detects
that one more follower crashes during the log commitment, it
decreases k by one and adds more subchunks encoded from the
newly missing chunk. Each server in FlexRaft+ separates the
storage of the original chunks and added subchunks (i.e., storing
them in different files) to reduce the overhead of removing the
subchunks during server recovery. Thus, the follower only needs
to overwrite the subchunks when receiving a log entry with a
smaller k.

To recover a failed follower, the leader directly sends the
original coded chunk to the failed server. For example, the leader
sends d2 to S2 during server recovery as shown in Fig. 5. Once
the leader has received the responses from the failed server that
the coded chunks have been stored, the leader notifies other
healthy servers to remove the subchunks, such that the overall
storage cost is reduced. An exceptional case is that the leader
may not contain the original full entry and it has no correspond-
ing coded chunk for the failed server (e.g., this entry has been
committed by a previous leader). In this case, the leader notifies
the failed follower to contact other healthy servers to collect
enough subchunks and recover the chunk; after the follower
successfully restores the chunk, the follower then notifies other
followers to remove the corresponding subchunks and replies to
the leader that the follower recovery completes.

V. EVALUATION

In this section, we show the I/O performance of the key-value
store atop FlexRaft, the breakdown performance, the overhead,
and the scalability of FlexRaft. We run all experiments on
Alibaba Cloud [1]. The cluster consists of at most 11 servers
to run key-value service and one individual server to send client
requests. Each server is a cloud instance equipped with an Xeon

CPU of 8 vCPU, 32 GiB DRAM, and 512 GiB ESSD cloud drive
(about 7800 IOPS). In each experiment, each Raft server spawns
two threads in two vCPUs to execute the Raft protocol and apply
log entries, and starts a thread on-the-fly to handle any incoming
RPC request. Each client sends read/write requests with a single
thread that runs in a vCPU. The network bandwidth is 1 Gbps.
We compare FlexRaft and FlexRaft+ with CRaft and HRaft in
the normal case and when some servers fail.

A. Write Performance

Normal write latencies: We first compare the write latencies
of FlexRaft and FlexRaft+ with CRaft and HRaft in normal cases
when no server fails. The Raft group has five or seven servers
(i.e., N = 5 or N = 7, respectively, where N = 2F + 1). For
the coding scheme, we configure all possible values of k for
CRaft and use the largest k for HRaft; FlexRaft and FlexRaft+
choose the optimal coding scheme automatically. When N = 5,
CRaft can use RS(3,2) or RS(2,3) as its coding scheme; when
N = 7, CRaft can use RS(4,3), RS(3,4), or RS(2,5). HRaft uses
the largest value of k, i.e., RS(3,2) when N = 5 and RS(4,3)
when N = 7. The key size is 16 bytes (same for the following
experiments), and the value size varies from 4 KiB to 2 MiB.
For each value size, the client generates 10000 PUT requests.

Figs. 7 and 8 show the write latencies of CRaft, HRaft,
FlexRaft, and FlexRaft+ under different value sizes whenN = 5
and N = 7, respectively. When N = 5, CRaft (k = 3) has a
lower latency than CRaft (k = 2), reducing the latency by 4.05-
20.73% since CRaft (k = 3) saves the network bandwidth cost.
FlexRaft and HRaft achieve the same performance as CRaft
(k = 3) since both use the largest k to minimize the redundancy
ratio. When N = 7, CRaft (k = 4) achieves the lowest latency
among all three configurations. Compared to CRaft (k = 3)
and CRaft (k = 2), CRaft (k = 4) reduces the latency by up
to 18.15% and 35.32%, respectively. The latencies of FlexRaft,
FlexRaft+, and HRaft are close to that of CRaft (k = 4) under
the same value size since they use the same coding scheme with
the lowest redundancy ratio. Thus, both FlexRaft and FlexRaft+
minimize the network and storage costs for log replication in
normal cases.

Write performance under server failures: We evaluate the
write performance under one server failure when N = 5. We
use the same configuration as the above experiment. Fig. 9
plots the write latencies of different value sizes under one server
failure. As the number of healthy servers is below F + k, CRaft
(k = 3) converts to full-copy replication and HRaft replicates
two additional coded chunks, incurring higher network and
storage costs. In this case, FlexRaft varies the coding scheme
to RS(2,3), achieving the lowest latency as CRaft (k = 2).
Compared to CRaft (k = 3) and HRaft, FlexRaft reduces the
latency by at most 32.82% and 8.43%, respectively. FlexRaft+
achieves similar write performance to FlexRaft, because both
of them incur the minimum network and storage costs. As
FlexRaft+ needs to perform encoding once more (i.e., generating
the subchunks) and store the subchunks separately, FlexRaft+
increases the write latencies of FlexRaft by 3.27% on average
under different value sizes.
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Fig. 11. Performance under YCSB workloads when N = 7.

We then measure the write performance under a different
number of server failures when N = 7. Fig. 10(a) and (b) show
the write latencies under one server failure and two server
failures, respectively. When one server fails, FlexRaft and CRaft
(k = 3) achieve the lowest write latencies among all coding
schemes, while CRaft (k = 4) has the highest latencies as it
converts to full-copy replication. FlexRaft reduces the latencies
of CRaft (k = 4), CRaft (k = 2), and HRaft by up to 54.28%,
28.97%, and 9.25%, respectively. When there are two failed
servers, FlexRaft uses RS(2,5) for log replication to minimize
the redundancy ratio and incurs the minimum network traffic and
storage overhead. Both CRaft (k = 4) and CRaft(k = 3) switch
to full-copy replication, while HRaft stores more coded chunks.
Compared to CRaft (k = 4) and HRaft, FlexRaft reduces the
write latency by 37.32% and 14.10%, respectively when the
value size is 2 MiB. The write latency of FlexRaft+ is similar
to that of FlexRaft as they incur the same network and storage
costs, where FlexRaft+ increases the latency by at most 3.26%
and 2.89% under one server failure and two server failures,
respectively. The small latency increase in FlexRaft+ comes
from the additional coding overhead of subchunks, which is
negligible as the network transfer time accounts for the majority
of the total processing time (shown in Section V-C).

B. Performance Under YCSB Workloads

We compare the performance of FlexRaft and FlexRaft+ to
HRaft and CRaft under YCSB [13] workloads when N = 7. We
configure the largest value of k (k = 4) for CRaft and HRaft. We
launch four client threads to generate 10000 requests following
a Zipf distribution with a Zipfian constant of 0.99. Here, we fix
the value size as 2 MiB.

Fig. 11 shows the throughput of CRaft, HRaft, FlexRaft, and
FlexRaft+ under YCSB workload A (50% reads, 50% updates),
B (95% reads, 5% updates), C (100% reads), D (95% read-latest,
5% inserts), and F (50% reads, 50% read-modify-writes), when
there is one failed server and two failed servers, respectively.
Here, we do not show the results of workload E (95% scans,
5% updates) as our prototype does not support scan operations
currently. Compared to CRaft and HRaft, FlexRaft increases
the throughput of write-heavy workloads (A and F) by 37.28-
115.14% and 9.47-18.76%, respectively, because FlexRaft mini-
mizes the network and storage costs during writes. For read-only
workload (C), all protocols achieve similar throughput as they
directly read data from the leader. For read-intensive workloads
(B and D), FlexRaft improves the throughput of CRaft and

Fig. 12. Breakdown performance of a put operation.

HRaft by 8.90-17.88% and 1.40-5.74%, respectively. FlexRaft+
achieves similar performance to FlexRaft under different YCSB
workloads, where the throughput of FlexRaft+ is 2.26% lower
at most (when the fraction of write operations is high) due to its
additional encoding overhead in the presence of server failures.
Thus, FlexRaft achieves the best performance by reducing the
network and storage costs during writes.

C. Microbenchmarks

We study the breakdown performance of a single PUT op-
eration in the presence of server failures. We divide the whole
process of a PUT operation into the following parts: (i) the com-
munication latency between the client and the leader (denoted
by client); (ii) the total time spent in handling the request and
encoding (denoted by processing); (iii) the latency of sending
AppendEntries RPCs in parallel to replicate an entry (denoted
by network); and (iv) the time of applying a log entry to the state
machine (denoted by applying). Note that the sum of the pro-
cessing time and network latency is indeed the commit latency
of a log entry. The client time is calculated by deducting the
processing, network, and applying times from the total response
time observed in the client (i.e., the time from sending a request
until receiving the response). In common cases, there are one
RTT between the client and the leader, and one RTT between
the leader and each of its followers. Note that the network time
varies due to the difference in payload size. We fix the value
size as 2 MiB and send 10000 PUT requests from the client.
We configure the largest value ofk for CRaft and HRaft to reduce
the redundancy ratio, i.e., k = 3 when N = 5, and k = 4 when
N = 7.

Fig. 12 shows the breakdown performance of CRaft, HRaft,
FlexRaft, and FlexRaft+. CRaft, HRaft, and FlexRaft have simi-
lar client, processing, and applying latencies, as they go through
the same workflow. FlexRaft+ incurs 53.76-70.91% higher pro-
cessing latencies than FlexRaft due to the additional encoding
overhead of generating subchunks on the leader. However, the
encoding impact on the overall write latency in FlexRaft+ is neg-
ligible, as the processing latency only accounts for about 5.18%
of the total write latency. The network latency, depending on the
network bandwidth cost, determines the overall write latency.
For N = 5, FlexRaft reduces the network latencies of CRaft
and HRaft by 41.02% and 10.45% under one server failure,
resulting in 39.95% and 8.19% reduction of commit latencies.
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Fig. 13. RPC time of AppendEntries requests.

For N = 7, compared to CRaft and HRaft, FlexRaft reduces the
commit latencies by 61.20% and 14.26%, respectively under
one server failure, and 44.51% and 19.37%, respectively under
two server failures. The reduction of commit latencies confirms
the saving of network traffic; for example, FlexRaft reduces the
network bandwidth costs of CRaft and HRaft by 50% and 20%
in theory under two server failures when N = 7, respectively.
FlexRaft+ achieves the same network latencies as FlexRaft does
as they transfer the same size of payload for each entry to be
committed. Thus, FlexRaft and FlexRaft+ minimize the network
bandwidth and storage costs using a flexible coding scheme for
log replication.

D. Overhead of FlexRaft

The overhead of updated AppendEntries RPCs: We compare
the updated AppendEntries RPCs in FlexRaft to the original
RPCs in Raft. We measure the completion time of one Appen-
dEntries RPC (including one request and one response) carrying
one log entry, labeled as RPC time. We vary the payload size
of the log entry from 4 KiB to 2048 KiB. Fig. 13 plots the
RPC time of the original and the updated AppendEntries. The
RPC time of the updated AppendEntries is almost the same as
that of the original across different payload sizes. FlexRaft only
adds 16 B to the request and 8 B to the response to include the
EntryType and ChunkInfo, which are negligible compared to the
payload sizes. As FlexRaft+ reuses the AppendEntries RPCs,
the overhead of the updated AppendEntries in both FlexRaft
and FlexRaft+ is negligible.

The overhead of varying the coding scheme: We study
the overhead of varying the coding scheme in FlexRaft and
FlexRaft+. We measure the write latency under a different
number of server failures for a group of seven servers (i.e.,
N = 7). Here, we fix the value size as 2 MiB. Fig. 14 shows
the average commit latencies of Raft, CRaft, HRaft, FlexRaft,
and FlexRaft+ over 10,000 times. Note that the x-axis in Fig. 14
shows the timeline of different server failure cases: (i) all servers
are healthy (i.e., f = 0), (ii) one of the servers fails during log
replication (i.e., f → 1), (iii) the server status of all servers
stabilizes under a server failure (i.e., f = 1), (iv) one additional
server fails during log replication (i.e., f → 2), and (v) the server
status of all servers stabilizes under two server failures (i.e.,
f = 2). All three protocols with erasure coding achieve the same
latency using RS(4,3) in normal cases, reducing the commit
latency of Raft by 69.03%. When a server fails during log

Fig. 14. The overhead of varying the coding scheme.

replication (i.e., f → 1), CRaft reduces to full-copy replication,
while HRaft needs to store one more chunk in three followers;
FlexRaft re-encodes the log entry with RS(3,4) and distributes
the new chunks to the remaining followers; FlexRaft+ only
needs to encode the missing chunks with RS(3,3) and store
the subchunks in five servers. The additional network costs
of CRaft, HRaft, FlexRaft, and FlexRaft+ are 5, 3/4, 5/3, and
5/12 respectively. Thus, the write latency of CRaft is the largest,
which is 11.67% higher than that of Raft and about four times the
normal latency with erasure coding. HRaft and FlexRaft increase
the normal write latency by 63.45% and 90.28%, respectively,
but this only occurs once when the server fails during writes.
FlexRaft+ achieves the lowest commit latency in the presence
of failure, which is 9.11% and 21.71% lower than those of HRaft
and FlexRaft, respectively. Like HRaft, FlexRaft+ does not vary
the coding scheme directly and overwrites existing chunks on
the follower nodes, which helps reduce the commit latency of
FlexRaft. Compared to HRaft, FlexRaft+ reduces the network
and storage costs by only storing the encoded subchunks for the
missing chunk instead of replicating the missing chunk.

When the server status remains unchanged under one server
failure, FlexRaft achieves the lowest commit latency and reduces
the latency of CRaft and HRaft by 61.20% and 14.26%, respec-
tively. FlexRaft+ achieves a similar performance to FlexRaft,
because they incur the same network and storage costs. Note
that CRaft performs the same as Raft when one server fails.
When one more server fails during writes (i.e., f → 2), FlexRaft
switches to RS(2,5), resulting in 11.96% higher latency than
HRaft; FlexRaft+ encodes the two missing chunks with RS(2,3),
increasing the latency by 8.46% compared to HRaft. When
the number of failed servers increases from one to two, HRaft
performs the best by replicating the missing chunks directly,
while both FlexRaft and FlexRaft+ need to perform re-encoding.
When there are two failed servers, FlexRaft reduces the laten-
cies of CRaft and HRaft by 44.51% and 19.37%, respectively.
FlexRaft+ also achieves a similar performance to FlexRaft under
two server failures. The commit latency of CRaft under two
server failures is lower than that under one failure since CRaft
has one fewer follower storing a full copy of the log entries
which reduces the network and storage costs. While FlexRaft
incurs additional network transfer by varying the coding scheme
when a server fails during the log replication, FlexRaft achieves
the lowest latency by minimizing the network and storage costs
when the cluster status remains stable (i.e., f = 0, 1, 2). As
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Fig. 15. Decoding overhead during reads.

Fig. 16. Duration of leaderpre operations.

FlexRaft+ adopts the re-encoding-free log replication instead
of varying the coding scheme directly, FlexRaft+ achieves the
best performance under the stable cluster status and when the
server failure first occurs (i.e., f → 1).

Decoding overhead during reads: We compare the read per-
formance of FlexRaft and FlexRaft+ to that of Raft. Fig. 15
shows the read latencies of Raft, both FlexRaft and FlexRaft+ at
the first time to read (denoted by FlexRaft (1) and FlexRaft+
(1), respectively), and both FlexRaft and FlexRaft+ with 10
read times (denoted by FlexRaft (10) and FlexRaft+ (10),
respectively) under different coding schemes when N = 7.
Compared to Raft, FlexRaft (1) increases the read latencies
by 88.60-92.35%, while FlexRaft (10) only increases by 4.34-
6.62%. FlexRaft+ incurs slightly higher decoding overhead than
FlexRaft as it needs to first decode the missing chunks and then
recover the original value. The read latency of FlexRaft+ (1) is
101.81-106.42% higher than the read latency of Raft, while that
of FlexRaft+ (10) is only 8.98% higher than that of Raft due to
the data cache on the leader node. Thus, the decoding operation
has a limited negative impact on the read performance when the
leader does not crash frequently (i.e., the leader already stores a
full copy for read requests).

E. Server Recovery

Duration of the LeaderPre operation under the leader failure:
We measure the duration of the LeaderPre operation when the
leader fails and a new leader is elected; here, we considerN = 7.
As the LeaderPre operation only recovers the unapplied log
entries, we vary the number of unapplied log entries (from 1
to 100) with different value sizes. Fig. 16 shows the duration
of the LeaderPre operation, which increases with the number
of unapplied log entries. For the small values (e.g., 16 KiB), it
takes about 4 ms and 14 ms for FlexRaft to recover 10 and

100 log entries, respectively. For the values with a medium
size (e.g., 256 KiB), the LeaderPre operation in FlexRaft lasts
about 18 ms and 136 ms when there are 10 and 100 unapplied
log entries, respectively. For the large values (e.g., 2 MiB),
it takes about 106 ms for FlexRaft to recover 10 entries and
1.4 s to recover 100 entries. Compared to FlexRaft, FlexRaft+
increases the LeaderPre duration by 4.19% on average due
to its additional decoding overhead. Thus, the newly-elected
leader in both FlexRaft and FlexRaft+ can quickly complete
the LeaderPre operation, making a limited impact on system
availability.

Follower recovery: We compare the follower recovery latency
of FlexRaft and FlexRaft+ to show the recovery efficiency of
re-encoding-free log replication adopted by FlexRaft+. Fig. 17
plots the follower recovery latency under different server fail-
ures when N = 7. When one follower fails, FlexRaft+ reduces
the recovery latency of FlexRaft by 19.62-35.42%, because
FlexRaft+ can directly send the missing chunk with a smaller k
(i.e., using the optimal coding scheme) to the follower. If two
follower servers fail, FlexRaft+ reduces the recovery latency of
FlexRaft by 39.06-59.28% and 42.43-67.16% when recovering
one follower or both failed followers, respectively. The reduction
in recovery latency of FlexRaft+ comes from the re-encoding-
free log replication scheme, which reduces the data transfer size
from 1/(F + 1− f) to 1/(F + 1) of the log entry to recover
a failed follower. The recovery performance improvement of
FlexRaft+ over FlexRaft when recovering two failed followers
is higher than the theoretical improvement, because the large
data size to transfer in FlexRaft triggers the re-transfer process
due to the network timeout sometimes. Therefore, FlexRaft+
greatly improves the follower recovery performance by using
the re-encoding-free log replication.

Storage cost in the followers: To demonstrate the storage
efficiency of FlexRaft+, we measure the storage cost of different
consensus protocols. As each protocol needs to store a whole
copy of each log entry in the leader, we compare the storage cost
of the committed log entries in the followers. In this experiment,
we first make the leader commit 10,000 log entries of 1 MiB
in the presence of server failures; we then restart one failed
follower to trigger the follower recovery process; finally, we
calculate the total storage cost by summing up the storage costs
of all followers. Fig. 18(a) and (b) show the storage costs of
CRaft, HRaft, FlexRaft, and FlexRaft+ whenN = 7 andN = 9,
respectively. FlexRaft+ achieves the lowest storage cost in all
failure cases. Compared to FlexRaft, FlexRaft+ reduces the
storage cost by 27.58-37.89% and 19.56-25.66% for N = 7
and N = 9, respectively. FlexRaft+ achieves a lower storage
cost than FlexRaft, as it sends less data to the recovered fol-
lower (i.e., a chunk of 1/(F + 1) in FlexRaft+ and a chunk of
1/(F + 1− f) in FlexRaft). FlexRaft+ reduces the storage cost
of HRaft by 12.49-21.43%, because FlexRaft+ only stores the
coded subchunks rather than the original chunks.

F. Scalability of FlexRaft

We evaluate the performance of CRaft, HRaft, and FlexRaft
with a larger number of servers in a group. As all three protocols
achieve the lowest commit latency using the largest available
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Fig. 17. Duration of follower recovery under different server failures.

Fig. 18. Storage cost in the followers.

Fig. 19. Commit latency of CRaft, HRaft, FlexRaft, and FlexRaft+ with a
larger number of servers in a group.

value of k, we compare their commit latencies under a different
number of server failures. We set the payload size of each log
entry as 2 MiB and plot the average commit latencies over
10,000 times. Fig. 19 shows the commit latencies of CRaft,
HRaft, and FlexRaft under a different number of server failures
in a group of N = 9 and N = 11 servers. For a group of 9
servers, FlexRaft reduces the commit latency of CRaft and
HRaft by 43.20-71.00% and 17.14-24.87%, respectively. Also,
FlexRaft reduces the commit latency of CRaft and HRaft by
43.12-71.45% and 24.01-31.47%, respectively, when more than
one server fails in a group of 11 servers. FlexRaft+ achieves
almost the same commit latencies as FlexRaft due to the same
network and storage costs. The evaluation results demonstrate
that both FlexRaft and FlexRaft+ achieve higher performance
than CRaft and HRaft for a large-scale cluster in the presence of
server failures.

VI. RELATED WORK

Improving the performance of consensus protocols: Dis-
tributed systems employ consensus algorithms to provide
high reliability and availability for upper-layer applications.

Paxos [18], [19] is one commonly used consensus protocol in
distributed systems, such as Chubby [9] and Spanner [9]. Many
variants of Paxos [8], [11], [20], [24], [28], [34] have been
proposed in the literature to improve the performance of Paxos-
based systems. Mencius [20] proposes Round-robin Paxos
with rotating leaders to alleviate the single-leader bottleneck.
EPaxos [24], [28] extends vanilla Paxos in a decentralized fash-
ion to achieve optimal commit latency. SDPaxos [34] presents
a semi-decentralized replication, which overlaps the separated
replicating and ordering processes to achieve one-round-trip
latency under three/five-replica configurations. WPaxos [8] pro-
poses a multi-leader Paxos to achieve low latency and high
throughput in WAN deployments. PigPaxos [11] decouples the
decision-making from the communication at the leader using an
in-network aggregation and piggybacking technique.

Raft [26] is a widely used consensus algorithm designed for
easy understanding and implementation, which is equivalent to
Multi-Paxos. There have been many optimizations proposed
to improve the performance of the original raft protocols in
recent years [10], [16], [17], [30]. ParallelRaft [10] realizes a
parallelized version of Raft, which removes the original Raft’s
strict serialization for high I/O concurrency. HovercRaft [17] ex-
tends the Raft protocol by eliminating CPU and I/O bottlenecks
to achieve both scalability and fault tolerance. KV-Raft [30]
introduces commit return and immediate read into vanilla Raft,
to accelerate the write and read performance of distributed
key-value storage systems respectively. NB-Raft [16] increases
the parallelism and throughput of Raft by enabling multiple
entries from the same client to be processed in parallel.

Optimizing consensus algorithms with erasure coding: Some
studies [15], [25], [29], [31] extend the replication-based Paxos
and Raft protocols with erasure coding (based on RS codes [27])
for higher performance with lower overhead. Erasure coding
has been widely applied in distributed storage systems [3], [14]
to protect data against server failures with a low redundancy
ratio. The adoption of erasure coding in consensus algorithms
introduces a new approach to improve the overall system per-
formance by reducing the redundancy overhead. RS-Paxos [25]
is the first consensus protocol that combines erasure coding
into Paxos protocol, but reduces the liveness level. Pando [29]
leverages erasure coding in geo-distributed storage to reduce
costs for preserving consistency. CRaft [31] applies erasure
coding to Raft while keeping the same liveness level as the
original Raft protocol, but it degrades to full-copy replication
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when the number of failed servers exceeds a certain threshold.
HRaft [15] addresses the degradation problem of CRaft by
maintaining additional coded data in healthy servers instead of
switching to full-copy replication when server failure occurs.

VII. CONCLUSION

This paper proposes FlexRaft which minimizes the network
and storage costs by dynamically adjusting the coding scheme
used for log replication in Raft. It uses the optimal coding scheme
with the available largest k based on the server status. When
varying the coding scheme during writes, FlexRaft restricts the
overwriting of the coded chunks and updates the AppendEn-
tries RPCs to make sure that all servers store the right coded
chunks. We further propose re-encoding-free log replication in
FlexRaft+ to enable fast server recovery. Our evaluation results
demonstrate that both FlexRaft and FlexRaft+ minimize the
network and storage costs for log replication in Raft, while
FlexRaft+ enables fast server recovery.
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