
CSCI4430 Data Communication and Computer Networks

Pthread Programming

ZHANG, Mi

Jan. 26, 2017

Outline

• Introduction

• What is Multi-thread Programming

• Why to use Multi-thread Programming

• Basic Pthread Programming

• Recommended Materials

Introduction

 Server accepts connection requests

 Exchange data

while(1){
int client_sd = accept(…);
// Do something

}

while(1){
int len = recv(…);
// Handle received messages

}

• Socket programming

Introduction

• Recall the blocking functions in the last tutorial.
If we do not have multi-thread programming:

– The whole program will be blocked waiting for
incoming connection requests and data.

– We cannot handle both with only One thread.

while(1){
int sd = accept(…);
…

}

while(1){
int len = recv(…);
…

}

What is Multi-thread Programming

• A thread is a sequence of instructions within a
program that can be executed independently of
other code.

• Thread
– Exists within one process.
– Has independent flow of control.

• Duplicates the essential resources only.
• May share the process resources.

– Dies if the parent dies.
– Is “lightweight”.

Why Multi-thread Programming

• Multi-thread programming

– Shared data in one process.

– A thread can be created with little operation
system overhead.

– Managing threads requires less system resources
than managing processes.

Why Multi-thread Programming

• To accomplish the functionalities of the server
within one program, we use multiple threads.

– The blocking operations, will block one thread
instead of the whole program.

while(1){
int sd = accept(…);
…

}

while(1){
int len = recv(…);
…

}

Thread 1: Thread 2:

Basic Pthread Programming

• To implement a multi-threads program using pthread
library:
– #include <pthread.h>
– pthread_t, to define a thread id
– pthread_create, to create a thread
– pthread_join, join with a terminated thread
– pthread_mutex_t, to create a mutex in pthread
– pthread_mutex_lock, to lock a mutex in pthread
– pthread_mutex_unlock, unlock a mutex in pthead

• While compiling your program, you should use “-
lpthread” flag
– gcc -o main main.c -lpthread

Basic Pthread Programming

• pthread_create()
– Starts a new thread in the calling process.

– Syntax
• int pthread_create(pthread_t * thread, const pthread_attr * attr,

void* (*start_routine)(void *), void* arg);

– Parameters
• thread: the thread handler of the newly created thread;

• attr: the attributes of the thread, in most cases set to NULL;

• start_routine: the pointer pointing to the function which will
run in the thread;

• arg: the argument for the start_routine function NULL when
there is no arguments.

Basic Pthread Programming

• pthread_create()

– The new thread starts execution by invoking
start_routine();

– arg is passed as the sole argument of
start_routine().

– Example

pthread_t thread;
int rc = pthread_create(&thread, NULL, start_routine, NULL);

Basic Pthread Programming

• pthread_join()
– Waiting for another thread to terminate

– Syntax
• int pthread_join(thread_t* th, void ** thread_ret);

• th: waiting for the thread with the thread handler “th”
to terminate

• thread_ret: if the return value is not NULL, thread_ret
will point to the place where the return value of thread
th is stored

– Example

pthread_join(thread, NULL);

Basic Pthread Programming

• pthread_detach()
– detach a thread

– Syntax
• int pthread_detach(pthread_t thread);

• The resources of the detached thread can be
reclaimed when that thread terminates.
– This routine can be used to explicitly detach a

thread even though it was created as joinable.

– Detached thread can never be joined.

Basic Pthread Programming

• pthread_exit()

– Termination of the calling thread

– Syntax

• void pthread_exit(void * ret_value)

• ret_value is the return value of the thread, setting to
NULL will be OK for most cases

– Example

pthread_exit(NULL);

Basic Pthread Programming

• Return value of pthread_exit()

– pthread_exit() will kill the thread and never
return. Thus,

• Remember that the return value cannot be of local
scope, otherwise when the thread terminates, the
return value will not exist.

– This value can be get and examined by some other
thread with function pthread_join()

Transfer Data Among Threads

• Using global variable.

– Do not forget mutex.

• Initialize the worker threads with arguments.

– pthread_create()

• Multiple arguments for start_routine
– Always using a structure to pass the arguments

– Example:

https://computing.llnl.gov/tutorials/pthreads/#Mutexes

Recommended Materials

• Here are some links from which you can get
more guidance on pthread programming

– POSIX Threads Programming

– POSIX thread (pthread) libraries

– Wikipedia

• Always take Manual for reference.

– man pthread_create

https://computing.llnl.gov/tutorials/pthreads/
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
https://en.wikipedia.org/wiki/POSIX_Threads

